袁瑞银,刘艳琪.非线性薛定谔-基尔霍夫型系统的基态解[J].南华大学学报(自然科学版),2019,33(5):68~71.[YUAN Ruiyin,LIU Yanqi.Ground States for a Nonlinear Schrdinger System with Kirchhoff Term[J].Journal of University of South China(Science and Technology),2019,33(5):68~71.] |
非线性薛定谔-基尔霍夫型系统的基态解 |
Ground States for a Nonlinear Schrdinger System with Kirchhoff Term |
投稿时间:2019-05-31 |
DOI: |
中文关键词: 薛定谔系统 基尔霍夫项 Nehari流形 基态解 |
英文关键词:Coupled Schrdinger equations Kirchhoff term Nehari manifold ground state solution |
基金项目: |
|
摘要点击次数: 784 |
全文下载次数: 563 |
中文摘要: |
研究如下薛定谔-基尔霍夫型系统, -a+b∫R3u12dxΔu1+λ1u1=μ1u12q-2u1+b12u2qu1q-2u1, -a+b∫R3u22dxΔu2+λ2u2=μ2u22q-2u2+b21u1qu2q-2u2, u1∈H1(R3),u2∈H1(R3), 其中a>0,b≥0,λi,μi(i=1,2)是任意给定的正常数,b12=b21>0且q∈(2,3)。分析非局部项(∫R3ui2dx)带来的扰动影响,利用变分方法证明了系统存在一个正基态解(u*1,u*2),且u*i(i=1,2)是径向对称衰减的。 |
英文摘要: |
This paper mainly studies the existence of ground states for a coupled Schrdinger- Kirchhoff-type equations -a+b∫R3u12dxΔu1+λ1u1=μ1u12q-2u1+b12u2qu1q-2u1, -a+b∫R3u22dxΔu2+λ2u2=μ2u22q-2u2+b21u1qu2q-2u2, u1∈H1(R3),u2∈H1(R3), where a>0,b≥0,λi,μi(i=1,2) are positive constants,b12=b21>0 and q∈(2,3).It employs variational methods to show that the above system has at least one positive ground state(u*1,u*2) with u*i,(i=1,2) radially decreasing. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|