|
硅铁化合物的电化学合成及对废水中铀分离固定性能研究 |
Research on the Application of Silicon in Iron-Graphite Electrochemical Systems for Uranium Separation from Wastewater |
投稿时间:2025-03-25 修订日期:2025-03-31 |
DOI: |
中文关键词: 含铀废水 电化学矿化 硅铁氧化物 非晶态 |
英文关键词:Uranium-containing wastewater Electrochemical mineralization Silicon-iron oxides Amorphous |
基金项目: |
|
摘要点击次数: 3 |
全文下载次数: 0 |
中文摘要: |
铀污染水体的高效治理与长期稳定性控制是核能可持续发展面临的关键环境挑战。自然环境中硅铁化合物结构相对稳定,是作为铀矿化固定的理想载体。本研究构建Fe-C电化学体系,以可溶性硅酸盐为电解质,系统探究硅酸盐浓度、pH、电流及温度对硅铁氧化物除铀效率及产物稳定性的影响机制。结果表明,硅的引入通过抑制铁氧化物结晶路径,促使体系生成非晶态硅铁氧化物,导致铀固定机制由晶格固溶向表面吸附转变。硅酸盐浓度升高(>5 mM)和初始pH提升(pH≥4)分别使铀去除率降低12%和17%,且产物稳定性显著下降(铀浸出率升至92%)。高电流(150 mA)虽可维持铀去除率>97%,但加剧了吸附主导特性;高温(90℃)通过促进铁硅基质致密化,使铀浸出率降低30%。XRD与TEM分析证实,非晶态硅铁氧化物的松散结构是固铀稳定性不足的关键因素。 |
英文摘要: |
Efficient remediation and long-term stability control of uranium-contaminated water bodies represent critical environmental challenges for the sustainable development of nuclear energy. In natural environments, iron-silicate compounds with relatively stable structures serve as ideal carriers for uranium mineralization and immobilization. This study established an Fe-C electrochemical system using soluble silicate as the electrolyte, systematically investigating the influence mechanisms of silicate concentration, pH, current density, and temperature on uranium removal efficiency and product stability. The results demonstrate that silicon incorporation inhibits the crystallization pathway of iron oxides, promoting the formation of amorphous iron-silicate oxides, which shifts the uranium immobilization mechanism from lattice solid solution to surface adsorption dominance. Notably, elevated silicate concentrations (>5 mM) and increased initial pH (≥4) induced reductions of 12% and 17% in uranium removal efficiency, respectively, accompanied by significant deterioration in product stability (uranium leaching rate escalated to 92%). While high current density (150 mA) maintained uranium removal efficiency >97%, it intensified the adsorption-dominated characteristics. Conversely, elevated temperature (90°C) enhanced the densification of iron-silicate matrices, reducing uranium leaching by 30%. XRD and TEM analyses conclusively identified the loose structure of amorphous iron-silicate oxides as the fundamental factor compromising uranium immobilization stability. This mechanistic understanding provides crucial theoretical guidance for optimizing nuclear waste stabilization strategies through crystalline phase regulation. |
查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|