几类\mathbb{F}_{2^{3m}}上具有旋转结构置换多项式的构造
Construction of Permutation Polynomials with Rotational Structure over\mathbb{F}_{2^{3m}}
投稿时间:2025-03-24  修订日期:2025-05-08
DOI:
中文关键词:  置换多项式  三变元  有限域  向量空间
英文关键词:permutation polynomials  trivariate form  finite fields  vector space
基金项目:湖南省自然科学基金面上项目2023JJ30517
作者单位邮编
李云丽 南华大学 421001
郑立景* 南华大学 421001
王超 郑州市就业创业服务中心 
摘要点击次数: 19
全文下载次数: 0
中文摘要:
      有限域上置换多项式的构造和应用是密码学、编码学和组合学等领域的热点问题。向量空间\mathbb{F}_{2^m}^3上的置换函数与有限域\mathbb{F}_{2^{3m}}上的置换多项式可以相互转化,本文研究了向量空间\mathbb{F}_{2^m}^3上具有旋转结构的置换函数,构造了三类有限域\mathbb{F}_{2^{3m}}上的置换多项式,运用结式法、多变元法、待定系数法以及指数和等方法,从理论上证明了构造的函数具有置换性质。
英文摘要:
      Permutation polynomials are hot topics in the fields of cryptography, combinatorics, coding theory and related fields. There exists a correspondence between permutation functions on the vector space \mathbb{F}_{2^m}^3 and permutation polynomials over the finite field \mathbb{F}_{2^{3m}}. In this paper, we investigate permutation functions on \mathbb{F}_{2^m}^3 with rotational structures and construct three classes of permutation polynomials. We prove that they are indeed permutations by constructing a system of equations, primarily using methods such as resultants, multivariate techniques, the method of undetermined coefficients, and exponential sums.
  查看/发表评论  下载PDF阅读器
关闭