方耀楚,刘水平,卓菁嫄,陈卫,陈婉若.多策略协同改进蜣螂优化算法[J].南华大学学报(自然科学版),2024,(4):1~16.[FANG Yaochu,LIU Shuiping,ZHUO Jingyuan,CHEN Wei,CHEN Wanruo.Multi-strategy Collaborative Improvement Dung Beetle Optimization Algorithm[J].Journal of University of South China(Science and Technology),2024,(4):1~16.]
多策略协同改进蜣螂优化算法
Multi-strategy Collaborative Improvement Dung Beetle Optimization Algorithm
投稿时间:2024-03-06  
DOI:
中文关键词:  蜣螂优化算法  DBPSO  混沌映射  莱维飞行  CEC2005测试函数  CEC2019测试函数
英文关键词:Dung beetle optimization algorithm  DBPSO  chaotic mapping  Lévy flight  CEC2005 test function  CEC2019 test function
基金项目:湖南省自然科学基金项目(S2021JJSSLH0071);湖南省教育厅优秀青年资助项目(22B0443;306247)
作者单位E-mail
方耀楚 南华大学 土木工程学院,湖南 衡阳 421001
高性能混凝土湖南省重点实验室, 湖南 衡阳 421001
中国核建高性能混凝土重点实验室,湖南 衡阳 421001 
fangyaochu@usc.edu.cn 
刘水平 南华大学 土木工程学院,湖南 衡阳 421001  
卓菁嫄 南华大学 土木工程学院,湖南 衡阳 421001  
陈卫 南华大学 土木工程学院,湖南 衡阳 421001
高性能混凝土湖南省重点实验室, 湖南 衡阳 421001
中国核建高性能混凝土重点实验室,湖南 衡阳 421001 
 
陈婉若 南华大学 土木工程学院,湖南 衡阳 421001
高性能混凝土湖南省重点实验室, 湖南 衡阳 421001
中国核建高性能混凝土重点实验室,湖南 衡阳 421001 
 
摘要点击次数: 236
全文下载次数: 119
中文摘要:
      针对蜣螂优化算法(Dung beetle optimizer,DBO)全局搜索和局部开发能力不平衡、全局搜索能力弱、易陷入局部解的缺点,提出一种多策略协同改进的蜣螂优化算法(Dung beetle optimizer of PSO,简称DBPSO)。首先,使用Piecewise混沌映射初始化种群,使初始解位置更均匀,增加种群的丰富性;其次,引入改进正余弦算法,协调全局勘探和局部开发能力;然后,通过引入非线性衰减因子调节莱维飞行和布朗运动和加入警戒蜣螂机制对蜣螂最优位置进行扰动。通过CEC2005和CEC2019测试函数和Wilcoxon秩和检验,与多种元启发式算法对比验证了DBPSO算法具有很好的性能。最后,为进一步说明DBPSO算法在实际问题中的应用潜力,将3个实际工程设计问题进行求解,实验结果表明,所提DBPSO算法对于实际工程问题能有效地求解。
英文摘要:
      To address the shortcomings of the Dung Beetle Optimizer (DBO), which has an imbalance between global search and local exploitation ability, weak global search ability, and easy to fall into local solutions, a multi-strategy collaborative improved dung beetle optimization algorithm (DBPSO) is proposed. First, the population is initialized using piecewise chaotic mapping to enhance the uniformity of initial solution locations and increase the population diversity; second, an improved positive cosine algorithm is introduced to coordinate the global exploration and local exploitation capailities; next, the optimal location of the dung beetle is perturbed by introducing nonlinear decay factors to regulate the Lévy flights and Brownian motions and by incorporating a vigliant dung beetle mechanism. The DBPSO algorithm is verified to have good performance by CEC2005 and CEC2019 test functions and Wilcoxon rank sum test, in comparison with multiple meta-heuristic algorithms. Finally, to further illustrate the potential of the DBPSO algorithm in practical problems, three real engineering design problems are solved, and the experimental results show that the proposed DBPSO algorithm is effective for practical engineering problems.
查看全文  查看/发表评论  下载PDF阅读器
关闭