侯晶,戴纳新,李聪.基于BP神经网络的离线迭代混合试验方法研究[J].南华大学学报(自然科学版),2024,(1):21~30.[HOU Jing,DAI Naxin,LI Cong.Research on the Offline Iterated Hybrid Test Method Based on BP Neural Network[J].Journal of University of South China(Science and Technology),2024,(1):21~30.]
基于BP神经网络的离线迭代混合试验方法研究
Research on the Offline Iterated Hybrid Test Method Based on BP Neural Network
投稿时间:2023-10-29  
DOI:
中文关键词:  混合试验  神经网络  离线迭代  试验子结构
英文关键词:hybrid testing method  neural network  offline iteration  experimental substructure
基金项目:
作者单位E-mail
侯晶 南华大学 土木工程学院,湖南 衡阳 421200  
戴纳新 南华大学 土木工程学院,湖南 衡阳 421200 57069730@qq.com 
李聪 南华大学 土木工程学院,湖南 衡阳 421200  
摘要点击次数: 255
全文下载次数: 145
中文摘要:
      利用反向传播(误差逆传播算法back propagation algorithm,BP简称反向传播算法)神经网络对非线性结构位移-力系统进行拟合,将训练好神经网络作为试验子结构与数值子结构联合求解,省去了混合试验中试验子结构与数值子结构之间的实时数据交互,并通过迭代训练样本的方法不断逼近真实响应,克服了神经网络需要大量训练样本的问题。通过对两个自由度的非线性结构进行混合试验数值仿真,验证了该方法的可行性。以实际工程的一榀框架为混合试验对象,取一个隔震垫作为试验子结构进行数值仿真,进一步验证了该方法的有效性。
英文摘要:
      This study utilizes back propagation (BP) neural networks to fit the displacement-force system of nonlinear structures. The trained neural network is then used as a physical substructure in conjunction with a numerical substructure to solve the problem, eliminating the need for real-time data exchange between physical and numerical substructures. By iteratively training sample data, this approach continually approaches the real response, overcoming the issue of requiring a large number of training samples for neural networks. The feasibility of the proposed method was verified through numerical simulation of hybrid experiments on two degrees of freedom nonlinear structures. An actual engineering framework was chosen as the object for hybrid experiments, and a seismic isolation pad was selected as the experimental substructure for numerical simulation, further confirming the effectiveness of the method.
查看全文  查看/发表评论  下载PDF阅读器
关闭