李艳,储家蕊,廖新元.一类具有非线性发病率的随机传染病模型的持久性[J].南华大学学报(自然科学版),2023,(1):71~77.[LI Yan,CHU Jiarui,LIAO Xinyuan.On Persistence for a Stochastic Epidemic Model with Nonlinear Incidence[J].Journal of University of South China(Science and Technology),2023,(1):71~77.]
一类具有非线性发病率的随机传染病模型的持久性
On Persistence for a Stochastic Epidemic Model with Nonlinear Incidence
投稿时间:2022-10-26  
DOI:10.19431/j.cnki. 1673-0062.2023.01.011
中文关键词:  随机微分方程  平衡稳定性  灭绝性  持久性
英文关键词:stochastic differential equation  equilibrium stability  extinction  persistence
基金项目:
作者单位
李艳 南华大学 数理学院,湖南 衡阳421001 
储家蕊 南华大学 数理学院,湖南 衡阳421001 
廖新元 南华大学 数理学院,湖南 衡阳421001 
摘要点击次数: 141
全文下载次数: 216
中文摘要:
      本文研究了一类具有非线性发病率的SIS随机模型。首先对其相应的确定性模型进行了平衡态稳定性分析,得到了决定疾病灭绝和持久存在的阈值;然后利用随机微分方程的一些理论对随机系统在环境噪声影响下的阈值进行了研究;最终得到了疾病在随机系统中灭绝和持久存在的充分条件,并用数值模拟验证了所得结论的正确性。
英文摘要:
      In this paper, a SIS stochastic model with nonlinear incidence rate is studied. Firstly, the equilibrium stability analysis of its corresponding deterministic model is carried out, and the threshold that determines the extinction and existence of diseases is obtained; and then the threshold of stochastic system under the influence of environmental noise is studied by some theories of stochastic differential equations. Finally the sufficient conditions for the extinction and persistence of diseases in stochastic systems are obtained, and the correctness of the obtained conclusions is verified by numerical simulation.
查看全文  查看/发表评论  下载PDF阅读器
关闭