李伟南,廖茂新,李冰冰.一类具有时滞的SIR传染病模型的稳定性与Hopf分支[J].南华大学学报(自然科学版),2023,(1):59~63, 100.[LI Weinan,LIAO Maoxin,LI Bingbing.Stability and Hopf Bifurcation of SIR Infectious Disease Model with Time Delay[J].Journal of University of South China(Science and Technology),2023,(1):59~63, 100.]
一类具有时滞的SIR传染病模型的稳定性与Hopf分支
Stability and Hopf Bifurcation of SIR Infectious Disease Model with Time Delay
投稿时间:2022-10-01  
DOI:10.19431/j.cnki. 1673-0062.2023.01.009
中文关键词:  Hopf分支  时滞  平衡点  基本再生数
英文关键词:Hopf bifurcation  delay  balance  basic regeneration number
基金项目:湖南省自然科学基金项目(2020JJ4516);湖南省研究生科研创新项目(CX20220980)
作者单位E-mail
李伟南 南华大学 数理学院,湖南 衡阳 421001 2634945248@qq.com 
廖茂新 南华大学 数理学院,湖南 衡阳 421001  
李冰冰 南华大学 数理学院,湖南 衡阳 421001  
摘要点击次数: 206
全文下载次数: 198
中文摘要:
      本文研究了一类具有非线性发生率和恢复率的修正的SIR模型,考虑了疾病的潜伏期作为时滞因素,首先得到了模型的基本再生数R0,然后运用时滞微分方程的稳定性和分支理论,分析了模型无病平衡点和地方病平衡点的稳定性,得到了在地方病平衡点Hopf分支存在的条件,最后用MATLAB数值模拟验证结果。
英文摘要:
      In this paper, a modified SIR model with nonlinear incidence and recovery rate is studied. The latent period of the disease is considered as the delay factor. First the basic regeneration number R0 of the model is obtained, then the stability of disease-free equilibrium and endemic equilibrium is analyzed by using the stability and bifurcation theory of delay differential equation. The conditions of Hopf bifurcation at endemic equilibrium point were obtained, and the results were verified by MATLAB numerical simulation.
查看全文  查看/发表评论  下载PDF阅读器
关闭