钟逸晨,廖茂新.基于BP神经网络的核安全事故分级研究[J].南华大学学报(自然科学版),2022,(4):82~87.[ZHONG Yichen,LIAO Maoxin.Research on Nuclear Safety Accident Classification Based on BP Neural Network[J].Journal of University of South China(Science and Technology),2022,(4):82~87.] |
基于BP神经网络的核安全事故分级研究 |
Research on Nuclear Safety Accident Classification Based on BP Neural Network |
投稿时间:2022-03-01 |
DOI: |
中文关键词: BP神经网络算法 MATLAB 等级划分 核事故 |
英文关键词:BP neural network MATLAB grading nuclear accident |
基金项目:湖南省自然科学基金项目(2020JJ4516);湖南省学位与研究生教学改革研究项目(2019JGYB192) |
|
摘要点击次数: 457 |
全文下载次数: 301 |
中文摘要: |
利用国际核事故分级表的量化指标作为分级标准,以福岛核事故的厂外检测样本中的I-31、Cs-37、Cs-34等指标作为参照,利用MATLAB构建BP神经网络,预测核事故的等级,构建了五级、六级、七级核事故等级预测模型。结果表明:分级后的核事故预测模型的预测准确率得到了较大的提高。 |
英文摘要: |
This paper mainly uses the quantitative indicators of the International Nuclear Accident Grading Scale as grading criteria, and use the indicators of I-31, Cs-37 and Cs-34 from the off-site testing samples of the Fukushima nuclear accident as references to construct a BP neural network using MATLAB to predict the grade of nuclear accidents, and constructed grade five, grade six and grade seven nuclear accident prediction models respectively. The results show that the prediction accuracy of the graded nuclear accident prediction model has been greatly improved. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|