佘智凤,廖新元,陈沙沙,金薇.一类指数型非线性随机差分方程组解的稳定性分析[J].南华大学学报(自然科学版),2021,(6):54~59.[SHE Zhifeng,LIAO Xinyuan,CHEN Shasha,JIN Wei.Stability Analysis of Solutions for a Class of Stochastically Perturbed Exponential Type System of Difference Equations[J].Journal of University of South China(Science and Technology),2021,(6):54~59.] |
一类指数型非线性随机差分方程组解的稳定性分析 |
Stability Analysis of Solutions for a Class of Stochastically Perturbed Exponential Type System of Difference Equations |
投稿时间:2021-04-26 |
DOI: |
中文关键词: 指数型差分方程 随机干扰 Lyapunov函数 渐近均方稳定 依概率稳定〖PS21-05佘智凤OSID码.tif Z*2 Y4*4,Y#〗 |
英文关键词:exponential difference equation stochastic perturbations Lyapunov functional method asymptotic mean square stability stability in probability |
基金项目: |
|
摘要点击次数: 525 |
全文下载次数: 310 |
中文摘要: |
研究了一个指数型非线性随机差分方程组,并考虑了双随机因素的扰动,利用平衡点的平移变换、Jaccobi线性化、Lyapunov函数法及稳定性理论等得到该模型平衡解渐近均方稳定和依概率稳定的充分条件,并用数值仿真说明了所得结论的正确性。 |
英文摘要: |
In this paper, asymptotic behavior of a class of exponential type system of difference equations is investigated, taking the random perturbations of doubly stochastic factors into account. Using Jaccobi linearization, Lyapunov function method and stability theory, the sufficient conditions are obtained for stability in probability of both equilibriums of the model. Finally, the theoretical results are supported with numerical simulations. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|