薛晨,宁志刚.复杂光照场景下基于MTCNN的人脸检测[J].南华大学学报(自然科学版),2021,(3):70~74.[XUE Chen,NING Zhigang.Face Detection Based on MTCNN in Complex Lighting Scenes[J].Journal of University of South China(Science and Technology),2021,(3):70~74.]
复杂光照场景下基于MTCNN的人脸检测
Face Detection Based on MTCNN in Complex Lighting Scenes
投稿时间:2020-12-15  
DOI:
中文关键词:  人脸检测  多任务卷积神经网络  复杂光照  图像增强
英文关键词:face detection  MTCNN  complex lighting  image enhancement
基金项目:
作者单位E-mail
薛晨 南华大学 电气工程学院,湖南 衡阳 421001  
宁志刚 南华大学 电气工程学院,湖南 衡阳 421001 767640546@qq.com,nzg0928@163.com 
摘要点击次数: 733
全文下载次数: 745
中文摘要:
      为了提高复杂光照条件下的人脸检测识别率,提出了一种基于Retinex图像增强技术应用于多任务卷积神经网络(multi-task cascaded convolutional networks,MTCNN)的人脸测算法。算法用Retinex理论对图像进行增强,能明显提高MTCNN在不同光照场景下的人脸检测精度,同时使面部五个关键点的定位更准确。实验证明,在复杂光照场景下,该方法比原始MTCNN网络的人脸检测具有更好的效果,有利于后期的人脸对齐及分类任务。
英文摘要:
      In order to improve the recognition rate of face detection under complex lighting conditions, a face detection algorithm based on Retinex image enhancement technology applied to multi-task cascaded convolutional networks (MTCNN) was proposed. The algorithm uses Retinex theory to enhance the image, which can significantly improve the face detection accuracy of MTCNN in different lighting scenarios, and make the positioning of the five key points of the face more accurate at the same time. Experiments have proved that this method has better results than the original MTCNN network in face detection in complex lighting scenes, and is beneficial to the later face alignment and classification tasks.
查看全文  查看/发表评论  下载PDF阅读器
关闭