周自强.朴素贝叶斯分类在仪表故障判断上的应用[J].南华大学学报(自然科学版),2020,34(2):21~24, 33.[ZHOU Ziqiang.Application of Naive Bayesian Classification in Instruments Fault Judgment[J].Journal of University of South China(Science and Technology),2020,34(2):21~24, 33.]
朴素贝叶斯分类在仪表故障判断上的应用
Application of Naive Bayesian Classification in Instruments Fault Judgment
投稿时间:2019-11-01  
DOI:
中文关键词:  朴素贝叶斯  分类  仪表  故障判断
英文关键词:Naive Bayesian  classification  instruments  fault judgment
基金项目:
作者单位E-mail
周自强 辽宁红沿河核电有限公司,辽宁 大连 116000 770993079@qq.com 
摘要点击次数: 811
全文下载次数: 465
中文摘要:
      为了探讨朴素贝叶斯分类在仪表故障判断领域的应用价值,通过将某核电厂压力表故障的历史信息进行分类汇总,将故障的判断转换成文本分类任务,结合朴素贝叶斯分类算法和自然语言处理建立故障的分类模型,实现对新增故障的准确判断。通过验证,朴素贝叶斯分类模型能够对新增故障进行判断分类。测试中需要进行校验类故障准确率能够达到95%以上,其他类故障准确率高于70%。传统故障判断一般是由人来完成,通过贝叶斯分类模型实现对故障的判断,可减轻人员劳动强度,提高工厂维修自动化水平。
英文摘要:
      In order to investigate the application value of Naive Bayesian classification in the field of instruments fault judgment.By classifying and summarizing the historical maintenance information of pressure gauge fault in a nuclear power plant, the fault judgment is converted into a text classification task.After that the naive Bayesian classification algorithm and natural language processing are used to establish a diagnosis model to achieve accurate judgment of the new faults.It is proven the model can realize the fault judgment function,the accuracy rate which needs calibration can reach above 95%,while the others are above 70%.Traditional faults judgment is generally completed by human beings,while the bayesian classification model can reduce the labor intensity of personnel and improve the level of maintenance automation.
查看全文  查看/发表评论  下载PDF阅读器
关闭