李晓东,肖基毅,邹银凤.基于改进的TF-IDF与隐朴素贝叶斯的情感分类研究[J].南华大学学报(自然科学版),2019,33(2):79~84.[LI Xiaodong,XIAO Jiyi,ZOU Yinfeng.Research on Emotion Classification Based on Improved TF-IDF and Hidden Naive Bayes[J].Journal of University of South China(Science and Technology),2019,33(2):79~84.]
基于改进的TF-IDF与隐朴素贝叶斯的情感分类研究
Research on Emotion Classification Based on Improved TF-IDF and Hidden Naive Bayes
投稿时间:2018-10-08  
DOI:
中文关键词:  情感分类  隐朴素贝叶斯  TF-IDF  权重  朴素贝叶斯
英文关键词:emotion classification  hidden naive Bayes  TF-IDF  weight  naive Bayes
基金项目:南华大学研究生科学基金项目(2018KYY087)
作者单位E-mail
李晓东 南华大学 计算机学院,湖南 衡阳 421001 lxd314411@126.com 
肖基毅 南华大学 计算机学院,湖南 衡阳 421001  
邹银凤 惠州工程职业学院,广东 惠州 516023  
摘要点击次数: 785
全文下载次数: 639
中文摘要:
      为了提高情感分类准确率,提出了一种基于改进的TF-IDF与隐朴素贝叶斯的情感分类研究。通过改进的TF-IDF算法提取文本特征词,并根据属性之间的依赖关系添加隐藏的父节点,增强了属性之间的依赖关系,提高了情感分类的准确性。实验结果表明,在平均宏查准率、宏查全率和宏F1值在改进之后的算法分别提高了5%、8%和6%。
英文摘要:
      In order to improve the accuracy of emotion classification,it proposes an improved TF-IDF and hidden naive Bayes based emotion classification research.The improved TF-IDF algorithm is used to extract the text feature words and add hidden parent nodes according to the dependency relationship between attributes,which enhances the dependency relationship between attributes and improves the accuracy of emotion classification.The experimental results show that the improved algorithm increases the average macro precision,macro recall and macro F1 by 5%,8% and 6%,respectively.
查看全文  查看/发表评论  下载PDF阅读器
关闭