李晓东,肖基毅,邹银凤.基于改进的TF-IDF与隐朴素贝叶斯的情感分类研究[J].南华大学学报(自然科学版),2019,33(2):79~84.[LI Xiaodong,XIAO Jiyi,ZOU Yinfeng.Research on Emotion Classification Based on Improved TF-IDF and Hidden Naive Bayes[J].Journal of University of South China(Science and Technology),2019,33(2):79~84.] |
基于改进的TF-IDF与隐朴素贝叶斯的情感分类研究 |
Research on Emotion Classification Based on Improved TF-IDF and Hidden Naive Bayes |
投稿时间:2018-10-08 |
DOI: |
中文关键词: 情感分类 隐朴素贝叶斯 TF-IDF 权重 朴素贝叶斯 |
英文关键词:emotion classification hidden naive Bayes TF-IDF weight naive Bayes |
基金项目:南华大学研究生科学基金项目(2018KYY087) |
|
摘要点击次数: 785 |
全文下载次数: 639 |
中文摘要: |
为了提高情感分类准确率,提出了一种基于改进的TF-IDF与隐朴素贝叶斯的情感分类研究。通过改进的TF-IDF算法提取文本特征词,并根据属性之间的依赖关系添加隐藏的父节点,增强了属性之间的依赖关系,提高了情感分类的准确性。实验结果表明,在平均宏查准率、宏查全率和宏F1值在改进之后的算法分别提高了5%、8%和6%。 |
英文摘要: |
In order to improve the accuracy of emotion classification,it proposes an improved TF-IDF and hidden naive Bayes based emotion classification research.The improved TF-IDF algorithm is used to extract the text feature words and add hidden parent nodes according to the dependency relationship between attributes,which enhances the dependency relationship between attributes and improves the accuracy of emotion classification.The experimental results show that the improved algorithm increases the average macro precision,macro recall and macro F1 by 5%,8% and 6%,respectively. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|