姜小霞,欧阳自根,彭湘凌.非线性分数阶微分方程耦合系统三点边值问题解的存在性[J].南华大学学报(自然科学版),2015,29(1):94~99.[JIANG Xiao-xia,OUYANG Zi-gen,PENG Xiang-ling.Existence of the Solutions for a Coupled Systems of NonlinearFractional Order with Three-point Boundary Value Problem[J].Journal of University of South China(Science and Technology),2015,29(1):94~99.]
非线性分数阶微分方程耦合系统三点边值问题解的存在性
Existence of the Solutions for a Coupled Systems of NonlinearFractional Order with Three-point Boundary Value Problem
投稿时间:2014-05-26  
DOI:
中文关键词:  耦合系统  边值问题  Riemann-Liouville分数阶导数  Schauder不动点定理
英文关键词:coupled system  boundary value problem  Riemann-Liouville fractional derivative  Schauder fixed-point theorem
基金项目:
作者单位
姜小霞 南华大学 数理学院,湖南 衡阳 421001 
欧阳自根 南华大学 数理学院,湖南 衡阳 421001 
彭湘凌 南华大学 数理学院,湖南 衡阳 421001 
摘要点击次数: 618
全文下载次数: 560
中文摘要:
      讨论了非线性分数阶微分方程耦合系统的三点边值问题,利用Green函数的性质,将其转化为等价的积分方程耦合系统,应用Schauder不动点定理得到解的存在的充分条件.
英文摘要:
      In this paper,we study the three-point boundary value problem to a coupled system of nonlinear fractional differential equations.By the means of the Green’s function,the system can be reduced to the equivalent integral equation.Then we obtain some sufficient conditions for the existence of the solutions for the system by using the Schauder fixed-point theorem.
查看全文  查看/发表评论  下载PDF阅读器
关闭