廖基定,邹静妮.一类风险模型的破产概率及生存概率的积分—微分方程研究[J].南华大学学报(自然科学版),2015,29(1):84~87.[LIAO Ji-ding,ZHOU Jing-ni.Study on the Ruin Probability and Integral Differential Equations of the Survival Probability for a Risk Model[J].Journal of University of South China(Science and Technology),2015,29(1):84~87.]
一类风险模型的破产概率及生存概率的积分—微分方程研究
Study on the Ruin Probability and Integral Differential Equations of the Survival Probability for a Risk Model
投稿时间:2014-11-27  
DOI:
中文关键词:  破产概率  复合Poisson-Geometric过程  调节系数  积分微分方程
英文关键词:ruin probability  compound Poisson-Geometric process  adjusting coefficient  integral differential equation
基金项目:湖南省科技厅基金资助项目(2010ZK3052);南华大学基金资助项目(2010XQD33)
作者单位
廖基定 南华大学 数理学院,湖南 衡阳 421001 
邹静妮 南华大学 数理学院,湖南 衡阳 421001 
摘要点击次数: 561
全文下载次数: 766
中文摘要:
      对保费收取为Poison过程,索赔次数为Poison-Geometric过程的带干扰风险模型进行研究,证明了调节系数的存在性,给出了风险模型破产概率的一般表达式,推导了生存概率所满足的一个积分-微分方程.
英文摘要:
      In this article,the risk model with interference which premium obeys the Poison process and number of claims obeys the Poison-Geometric process was researched,the existence of the adjustment coefficient was proved,the general expression of ruin probability of the risk model was given,an integral differential equation of survival probability was deduced.
查看全文  查看/发表评论  下载PDF阅读器
关闭