黄千红.固定边界平衡方程的数值求解[J].南华大学学报(自然科学版),2014,28(3):1~4.[HUANG Qian-hong.The Solution of Equilibrium Equation with Fixed Boundary[J].Journal of University of South China(Science and Technology),2014,28(3):1~4.] |
固定边界平衡方程的数值求解 |
The Solution of Equilibrium Equation with Fixed Boundary |
投稿时间:2014-04-25 |
DOI: |
中文关键词: Grad-Shafranov方程 变分法 默森法 |
英文关键词:Grad-Shafranov equation variational method Merson method |
基金项目:研究生创新课题基金资助项目(2013XCX02);衡阳市科技局基础课题基金资助项目(2013KJ24);湖南省核聚变与等离子体物理创新团队建设基金资助项目(NHXTD03) |
|
摘要点击次数: 623 |
全文下载次数: 737 |
中文摘要: |
采用基于能量原理的变分法求解等离子体平衡方程,在给定的压强和环向电流密度分布情况下,采用变步长默森法对平衡方程进行了数值求解,得到了D型截面下极向和环向磁场分布.采用NSTX装置参数计算所得结果与文献结果一致.开发的固定边界平衡方程求解程序具有通用性特点,可以模拟不同装置的平衡位型. |
英文摘要: |
A variational method based on an energy principle is applied to solve plasma equilibrium equation.When the plasma pressure and current density profile is given,the balance equation is solved using a variable-step-size Merson method.The poloidal and toroidal magnetic field with dee-shaped plasma are obtained.The results which adopted NSTX device parameters are achieved agreeable to those in the references.The program is universal,which can be applied to simulate the balance equilibrium configuration in the different devices. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |