廖基定,刘再明*,龚日朝.赔付次数为复合Poisson-Geometric过程的风险模型破产概率上界估计[J].南华大学学报(自然科学版),2008,22(3):5~8.[LIAO Ji-ding1,2,LIU Zai-ming1*,GONG Ri-zhao3.The Upper Bounded Estimate for Ruin Probability with Claim Distrition Compound Poisson-Geometric Process[J].Journal of University of South China(Science and Technology),2008,22(3):5~8.]
赔付次数为复合Poisson-Geometric过程的风险模型破产概率上界估计
The Upper Bounded Estimate for Ruin Probability with Claim Distrition Compound Poisson-Geometric Process
投稿时间:2008-07-01  
DOI:
中文关键词:  Poisson-Geometric过程  风险模型  破产概率
英文关键词:Poisson-Geometric process  risk model  ruin probability
基金项目:国家自然科学基金资助项目(10371153);教育部人文社会科学规划基金资助项目(07JA790084);
作者单位
廖基定1,2,刘再明1*,龚日朝3 1.中南大学 数学科学与计算技术学院,湖南 长沙 4100752.南华大学 数理学院,湖南 衡阳 421001
3.湖南科技大学 商学院
湖南 湘潭 411201 
摘要点击次数: 766
全文下载次数: 833
中文摘要:
      赔付次数为复合Poisson-Geometric过程的风险模型目前在保险理论界是一个比较热的问题,复合Poisson-Geometric过程能较好地刻画保险公司对某同质保单组合实施推出免赔额制度和无赔款折扣等制度背景下赔付计数问题,本文将经典的风险模型推广到复合P-G模型,研究了其破产概率的上界估计问题,得到了估计公式.
英文摘要:
      At present,the risk model of compensation number which follows the compound Poisson-Geometric process is a hot topic in the insurance theory area.The compound Poisson-Geometric process can depict the compensation number better under the background that the insurance companies carry out the franchise system and no-discount compensation system to some hemgeneous cover notes.The essay popularized the classical risk model to the compound Poisson-Geometric model.It analyses the upper bounded estimate of the ruin probability and obtains the estimate formula.
查看全文  查看/发表评论  下载PDF阅读器
关闭