DOI:10. 19431/j. cnki. 1673-0062. 2020. 04. 002

COSINE 软件包堆芯物理分析程序(cosCORE)的初步验证

苑旭东^{1,2},周剑东^{1,2},谢金森^{1,2*},陈珍平^{1,2},郭 倩^{1,2},于 涛^{1,2}

(1. 南华大学 核科学技术学院, 湖南 衡阳 421001; 2. 南华大学 湖南省数字化反应堆工程 技术研究中心, 湖南 衡阳 421001)

摘 要:COSINE 软件包堆芯物理分析程序(cosCORE)是一款基于节块展开法的堆芯 扩散程序。为了验证 cosCORE 对轻水堆模型的临界计算能力与组件功率计算能力, 对三维两群压水堆问题 IAEA_3D 基准题与 BSS-14 基准题进行测试验证,并与基准 值进行比对。结果显示,对于 IAEA_3D 基准题,cosCORE 与基准值 k_{eff} 的相对误差为 0.669%o,组件相对功率误差均小于 2.178%;对于 BSS-14 基准题,计算值与基准值 k_{eff} 的相对误差为 0.677%o,组件相对功率最大误差为 1.733 1%。 关键词:COSINE 软件包;IAEA_3D 基准题;BSS-14 基准题;测试验证 中图分类号:TL503.6 文献标志码:A 文章编号:1673-0062(2020)04-0007-06

Preliminary Verification of COSINE Software Package Core Physical Analysis Program (cosCORE)

YUAN Xudong^{1,2}, ZHOU Jiandong^{1,2}, XIE Jinsen^{1,2}*, CHEN Zhenping^{1,2}, GUO Qian^{1,2}, YU Tao^{1,2}

(1. School of Nuclear Science and Technology, University of South China, Hengyang, Hunan 421001, China; 2. Hunan Engineering & Technology Research Center for Virtual Nuclear Reactor, University of South China, Hengyang, Hunan 421001, China)

Abstract: Core physical analysis program (cosCORE) of COSINE software package is a core diffusion code based on the nodal method. In order to verify the ability of critical calculation and assembly-wised power distribution calculation of cosCORE for the light water reactor model, the three-dimensional two-group pressurized water reactor problem IAEA_3D benchmark and BSS-14 benchmark were tested and verified, and compared with

收稿日期:2020-01-14

基金项目:大型先进压水堆核电站国家科技重大专项项目(2017ZX06002002)

作者简介:苑旭东(1995-),男,硕士研究生,主要从事反应堆物理方面的研究。*通信作者:谢金森(1985-),男,副教授,主要从事反应堆物理方面的研究。E-mail:xiejinsen@139.com

the benchmark value. The result shows that for the IAEA_3D benchmark, the relative error of $k_{\rm eff}$ between cosCORE and the reference value is 0.669‰, and the error of relative assembly-wised power distribution is less than 2.178%; For BSS-14 benchmark, the relative error of $k_{\rm eff}$ between the calculated value and the reference is 0.677‰, and the maximum error of the relative power density of the components is 1.733 1%.

key words: COSINE software package; IAEA_3D benchmark; BSS-14 benchmark; test and verification

0 引 言

COSINE 软件包(core and system integrated engine for design and analysis, COSINE)是由中国 国家核电软件开发中心(SNPSDC)正在开发的一 套集成的基于确定论的核工程代码包^[1],是大型 压水堆国家重大专项软件自主化课题中的一部 分^[2-3]。COSINE 软件包包含反应堆物理程序、热 工水力学程序、严重事故分析程序、概率安全分析 程序等,其中反应堆物理程序部分包括组件参数 计算程序(cosLATC)、堆芯物理分析程序 (cosCORE)、中子动力学程序(cosKIND)以及反 应堆屏蔽设计程序(cosSHIELD)等^[4]。在反应堆 核设计的"两步法"计算流程中,第一步由组件参 数计算程序 cosLATC 产生堆芯扩散计算所需要的 组件均匀化少群常数;第二步由堆芯物理分析程 序 cosCORE 进行堆芯计算,得到堆芯有效增殖系 数 k_{eff} 和功率分布等参数。

cosCORE 的主要功能是采用节块展开法 (nodal expansion method, NEM)求解少群中子扩 散方程,适用于一维、二维以及三维几何模型的计 算^[5-6]。cosCORE 功率重构采用多项式展开加功 率形状因子的方法重构。截面处理以基本硼降下 的截面为基准对燃料的温度、硼浓度、慢化剂密 度、可燃毒物等进行截面修正。

为验证 COSINE 软件包的堆芯物理分析程序 cosCORE 的准确性,本文使用 IAEA_3D 基准题和 BSS-14 基准题,通过 cosCORE 的计算结果与基准 题给出的参考有效增殖因数和归一化组件功率分 布进行比对分析,验证 cosCORE 程序的功能和计 算精度。

1 基准题介绍

1.1 IAEA_3D 基准题

IAEA_3D 基准题是由美国阿贡国家实验室

(Argonne National Laboratory, ANL)发布的三维两 群压水堆问题[7-8],目的是对粗网格方法和通量合 成近似法(使用预先计算好的形状函数,进行线 性组合逼近堆芯中子通量)提供一个严格的测 试。该基准题堆芯由177盒正方形组件组成,组 件中心距为 20 cm, 堆芯高度为 340 cm。 IAEA 3D 基准题的1/4 堆芯布置如图1 所示,组件少群均 匀化截面见表1。堆芯径向方向上采用内-外双区 布置,内区使用2型燃料组件,外区使用1型燃料 组件,堆芯最外层使用一层厚度为20 cm 的反射 层组件包围。在2型燃料组件中还有13盒包含 控制棒的组件,选取全堆芯中心位置组件为原点, 位于(-4, -4)、(0, -4)、(4, -4)、(-4, 0)、(0, -4)0)、(4,0)、(-4,4)、(0,4)和(4,4)位置的组件, 控制棒全部下插;位于(-2,-2)、(2,-2)、(-2, 2)和(2,2)位置的组件,控制棒仅下插 80 cm。轴 向方向上,堆芯上下均有20 cm 反射层,在布置有 控制棒的组件中,上部反射层中也要加入控制棒。 整个模型在 x 和 y 方向上均为奇数盒组件,即在 1/4 堆芯组件径向布置中(图1(a)), x 轴和 y 轴 的组件为半盒组件。计算中反射层外边界为真空 边界条件。

1.2 BSS-14 基准题

BSS-14 基准题^[7]是由美国阿贡国家实验室 (ANL)发布的沸水堆(boiled water reactor, BWR) 基准题,目的是对二维、三维中子动力学求解方 法,特别是粗网格方法,进行检验。该基准题堆芯 布置如图 2 所示,组件少群均匀化常数见表 2。 该基准题 1/4 堆芯包含 78 盒燃料组件,全堆芯共 312 盒燃料组件,组件中心距 15 cm,堆芯高度为 300 cm。在 x 方向和 y 方向均为偶数盒组件,在 径向堆芯布置图中(图 2(a)),位于 x 轴和 y 轴的 组件为完整的单盒组件,组件坐标见图 3;堆芯 上、下以及径向外围均有 30 cm 厚的反射层(图 2 (b)),计算中反射层外边界为零通量边界条件。

图 1 IAEA_3D 基准题 1/4 堆芯布置 Fig. 1 Material map of IAEA_3D benchmark

			8 1			
材料	能群	$D_{\rm g}/{ m cm}$	$\sum t_{t,g}/cm^{-1}$	$v \sum_{\rm f,g} / {\rm cm}^{-1}$	χ	$\sum_{\mathrm{g,g'}}/\mathrm{cm}^{-1}$
1	1	1.50×10^{0}	3.012 00×10 ⁻²	0.00×10^{0}	1.00×10^{0}	0.00.10-1
(燃料1)	2	4.00×10 ⁻¹	8.003 20×10 ⁻²	1.35×10 ⁻¹	0.00×10^{0}	0.20×10
2	1	$1.50 \times 10^{\circ}$	3.012 00×10 ⁻²	0.00×10^{0}	1.00×10^{0}	0.00.10-1
(燃料2)	2	4.00×10 ⁻¹	8.503 20×10 ⁻²	1.35×10 ⁻¹	0.00×10^{0}	0.20×10
3	1	1.50×10^{0}	3.012 00×10 ⁻²	0.00×10^{0}	1.00×10^{0}	0.00×10 ⁻¹
(燃料2+控制棒)	2	4.00×10^{-1}	1.300 32×10 ⁻¹	1.35×10 ⁻¹	0.00×10^{0}	0.20×10
4	1	$2.00 \times 10^{\circ}$	4.016 00×10 ⁻²	0.00×10^{0}	1.00×10^{0}	0.40×10^{-1}
(反射层)	2	3.00×10^{-1}	$1.002 40 \times 10^{-2}$	0.00×10^{0}	0.00×10^{0}	0.40×10
5	1	$2.00 \times 10^{\circ}$	4.016 00×10 ⁻²	0.00×10^{0}	1.00×10^{0}	0.40×10 ⁻¹
(反射层+控制棒)	2	3.00×10 ⁻¹	5.500 00×10 ⁻²	0.00×10^{0} 0	0.00×10^{0}	0.40×10

表 1 IAEA_3D 基准题组件少群参数 Table 1 Few-group constants of IAEA_3D benchmark

图 2 BSS-14 基准题 1/4 堆芯布置 Fig. 2 Material map of BSS-14 benchmark

	表 2	BSS-14 基准题组件少群参数	
Table 2	Few	group constants of BSS-14 benchmark	C

材料	能群	$D_{\rm g}$ /cm	$\sum_{a,g}/cm^{-1}$	$v \sum_{\rm f,g} / \rm cm^{-1}$	$\sum_{g,g'}/cm^{-1}$
1	1	1.255 0	0.008 252 0	0.004 602	0 025 22
1	2	0.211 0	0.100 300 0	0.109 100	0.023 33
2	1	1.268 0	0.007 181 0	0.004 609	0 027 67
2	2	0.1902	0.070 470 0	0.086 750	0.027 07
2	1	1.259 0	0.008 002 0	0.004 663	0 026 17
3	2	0.209 1	0.083 440 0	0.102 100	0.026 17
4	4 1 2	1.259 0	0.008 002 0	0.004 663	0.026.17
4		0.209 1	0.073 324 0	0.102 100	0.026 17
5	_ 1	1.257 0	0.000 603 4	0.000 000	0 047 54
3	2	0.159 2	0.019 110 0	0.000 000	0.047 54
			$\chi^1 = 1.0, \chi^2 = 0.0, v = 2.$	5	

2 计算过程

2.1 IAEA_3D 基准题计算过程

堆芯物理计算程序 cosCORE 为 COSINE 软件 包中的一部分,计算时使用文件输入模型参数,计 算结果输出到指定文件中。其输入文件采用数据 块的形式分层输入。各个数据块彼此相互独立, 不存在先后顺序,不存在相互的依赖。在每个数 据块由不同的关键字和该关键字的数据组成。在 对 IAEA_3D 基准题进行输运计算时,影响结果的 主要是系统参数数据块、轴向高度数据块、堆芯布 置数据块、组件定义数据块和材料类型数据块。

(0,8)	(1,8)	(2,8)	(3,8)	(4,8)	(5,8)	(6,8)		
(0,7)	(1,7)	(2,7)	(3,7)	(4,7)	(5,7)	(6,7)	(7,7)	
(0,6)	(1,6)	(2,6)	(3,6)	(4,6)	(5,6)	(6,6)	(7,6)	(8,6)
(0,5)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
(0,4)	(1,4)	(2,4)	(3,4)	(4,4)	(5,4)	(6,4)	(7,4)	(8,4)
(0,3)	(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6,3)	(7,3)	(8,3)
(0,2)	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	(6,2)	(7,2)	(8,2)
(0,1)	(1,1)	(2,1)	(3,1)	(4,1)	(5,1)	(6,1)	(7,1)	(8,1)
(0,0)	(1,0)	(2,0)	(3,0)	(4,0)	(5,0)	(6,0)	(7,0)	(8,0)

图 3 BSS-14 基准题组件坐标

Fig. 3 Position of fuel assemblies of BSS-14 benchmark

系统参数数据块是用以确定程序的求解方 法、边界条件、收敛准则、迭代次数等系统性的参 数。在这一数据块中,计算方法设为 NEM 方法; 中子的能群设为2群;计算区域为全堆芯;基准题 的六个外表面均设为真空边界条件;堆芯本征值 收敛准则设为10⁻⁵,通量收敛准则设为10⁻³;开启 功率重构,功率重构径向和轴向网格数目分别设 为17 和10;堆芯径向组件数目设置为17×17。

轴向高度数据块用于设置轴向的分层,提供 了自动分层和用户定义两种方式。在这一数据块 中,使用自定义方式,将轴向高度按每层 38 cm, 将 IAEA_3D 模型轴向分为 10 层。

堆芯布置数据块用于定义堆芯组件径向上的 排布。在这一数据块中,需要给出两个矩阵,一个 是计算区域矩阵,用于指定哪些区域需要计算;另 一个是组件序号的径向排布,用于指定填充的组 件类型。按照图1(a)的组件径向排布,对称生成 17×17的全堆芯模型,填写进两个矩阵中,堆外没 有组件的区域填为0,也即不需要计算区域。堆 内有组件的区域均设置为计算区域,堆芯组件分 为5种,编好序号后填入组件序号布置矩阵。

组件定义数据块用于定义各个类型组件的尺 寸和轴向分布。在这一数据块中,组件高度设置 为380 cm,组件宽度设置为20 cm。组件轴向分 布按照从顶倒底的顺序定义各个区域内的长度和 材料,按照图1(b)所示,将各个区域的长度和材 料信息写入数据块。 材料类型数据块用于定义输运计算中各个材料的少群截面数据。按照表1给出的少群常数填入该数据块中。以上数据块设置好后,即可进行输运计算。

2.2 BSS-14 基准题计算过程

对 BSS-14 基准题计算时, 与计算 IAEA_3D 类似, 需要设置系统参数数据块、轴向高度数据 块、堆芯布置数据块、组件定义数据块和材料类型 数据块。系统参数数据块中, 求解方法设置为 NEM; 中子能群 2 群; 计算区域全堆芯; 模型外边 界的边界条件均为零通量边界条件; 本征值和通 量的收敛准则分别为 10⁻⁵ 和 10⁻³; 开启功率重 构, 功率重构径向和轴向网格数目分别设为 22 和 10; 堆芯径向组件数目设置为 22×22。轴向高度 数据块中使用自定义, 按每 36 cm 将模型轴向分 为 10 层。堆芯布置数据块、组件定义数据块和材 料类型数据块按照图 2、图 3 和表 2 中给出的数 据填入, 然后使用 cosCORE 程序进行输运计算。

3 计算结果

3.1 IAEA_3D 计算结果

通过 cosCORE 程序对 IAEA_3D 基准题进行 计算,得到的 k_{eff} 为 1.029 170(见表 3),与文献中 给定的基准值相差 0.066 9%,二者吻合得非常 好。组件功率计算值与基准值的对比如图 4 所 示。从图中可以看出 cosCORE 对组件功率的计 算结果与基准值总体一致,所有结果与基准值的 相对误差均在 3% 以内。以堆芯中心位置组件为 原点,位于(5,5) 位置处的组件功率相对误差最 大,为 2.178%。

表 3 IAEA_3D 基准题 k_{eff} 计算结果对比 Table 3 Comparison of k_{eff} of IAEA_3D benchmark

	$k_{ m eff}$	相对误差/%
cosCORE	1.029 170	0.000
基准值	1.028 482	0.066 9

3.2 BSS-14 计算结果

通过 cosCORE 程序对 BSS-14 基准题进行计 算,得到的 k_{eff} 为 0.997 005(见表 4),与文献中给 定的基准值相差 0.067 7%,吻合得非常好。组件 功率计算值与基准值的对比如图 5 所示。从图 5 中可以看出 cosCORE 对组件功率的计算结果与 基准值非常接近,所有结果与基准值的相对误差 均在 2% 以内。以堆芯中心位置组件为原点,位 于(0,8)和(8,0)位置处的组件功率相对误差最大,为1.7331%。

0.775	0.754	0.704					
0.773	0.753	0.707					
0.259	0.133	-0.424			计算	[值	
0.959	0.973	0.996	0.860	0.602		1111	
0.958	0.974	0.997	0.864	0.608	相刈	沃 左/ >/0	
0.104	-0.103	-0.100	-0.463	-0.987			
0.956	1.055	1.088	0.920	0.696	0.584		
0.954	1.055	1.088	0.923	0.699	0.597		
0.210	0.000	0.000	-0.325	-0.429	-2.178		_
0.605	1.075	1.185	0.973	0.469	0.696	0.602	
0.610	1.072	1.181	0.972	0.475	0.699	0.608	
-0.820	0.280	0.339	0.103	-1.263	-0.429	-0.987	
1.198	1.294	1.316	1.180	0.973	0.920	0.860	
1.195	1.292	1.311	1.179	0.972	0.923	0.864	
0.251	0.155	0.381	0.085	0.103	-0.325	-0.463	
1.431	1.437	1.372	1.316	1.185	1.088	0.996	0.704
1.423	1.432	1.398	1.311	1.181	1.088	0.997	0.707
0.562	0.349	-1.860	0.381	0.339	0.000	-0.100	-0.424
1.287	1.401	1.437	1.294	1.075	1.055	0.973	0.754
1.283	1.398	1.432	1.292	1.072	1.055	0.974	0.753
0.312	0.215	0.349	0.155	0.280	0.000	-0.103	0.133
0.723	1.287	1.431	1.198	0.605	0.956	0.959	0.775
0.726	1.283	1.423	1.195	0.610	0.954	0.958	0.773
-0.413	0.312	0.562	0.251	-0.820	0.210	0.104	0.259

图 4 IAEA_3D 基准题组件功率计算结果对比

Fig. 4 Comparison of power distribution of IAEA_3D benchmark

表 4 BSS-14 基准题 k_{eff} 计算结果对比

Table 4Comparison of k_{eff} of BSS-14 benchmark

	$k_{ m eff}$	相对误差/%
cosCORE	0.997 005	0.0(7.7
基准值	0.996 330	0.067 /

0.9216	0.8643	0.8219	0.8468	0.9258	0.9629	0.8336		计算值 基准值	
1.7331	1.2298	0.9085	0.8427	-0.0216	0.5115	-0.7973		相对误	差/%
1.4884	1.2863	1.1724	1.2191	1.4223	1.6774	1.6154	1.3141		
1.4769	1.2703	1.1655	1.2168	1.4185	1.6882	1.6176	1.3323		
0.7787	1.2595	0.5920	0.1890	0.2679	-0.6397	-0.1360	-1.3661		
1.6819	1.1530	0.9656	1.0193	1.3359	2.0637	2.1725	1.6154	0.8336	
1.6725	1.1512	0.9608	1.0173	1.3450	2.0743	2.1888	1.6176	0.8403	
0.5620	0.1564	0.4996	0.1966	-0.6766	-0.5110	-0.7447	-0.1360	-0.7973	
1.4021	0.9415	0.7812	0.8403	1.1489	1.8634	2.0637	1.6774	0.9629	
1.3984	0.9416	0.7794	0.8400	1.1570	1.8739	2.0743	1.6882	0.9580	
0.2646	-0.0106	0.2309	0.0357	-0.7001	-0.5603	-0.5110	-0.6397	0.5115	
0.7915	0.6722	0.6170	0.6761	0.8637	1.1489	1.3359	1.4223	0.9258	
0.7939	0.6708	0.6209	0.6816	0.8655	1.1570	1.3450	1.4185	0.9260	
-0.3023	0.2087	-0.6281	-0.8069	-0.2080	-0.7001	-0.6766	0.2679	-0.0216	
0.5111	0.4896	0.4907	0.5506	0.6761	0.8403	1.0193	1.2191	0.8468	
0.5107	0.4931	0.4958	0.5565	0.6816	0.8400	1.0173	1.2168	0.8427	
0.0783	-0.7098	-1.0286	-1.0602	-0.8069	0.0357	0.1966	0.1890	0.4865	
0.4122	0.4056	0.4226	0.4907	0.6170	0.7812	0.9656	1.1724	0.8219	
0.4134	0.4092	0.4275	0.4958	0.6209	0.7794	0.9608	1.1655	0.8145	
-0.2903	-0.8798	-1.1462	-1.0286	-0.6281	0.2309	0.4996	0.5920	0.9085	
0.4401	0.3995	0.4056	0.4896	0.6722	0.9415	1.1530	1.2863	0.8643	
0.4438	0.4010	0.4092	0.4931	0.6708	0.9416	1.1512	1.2703	0.8538	
-0.8337	-0.3741	-0.8798	-0.7098	0.2087	-0.0106	0.1564	1.2595	1.2298	
0.6181	0.4401	0.4122	0.5111	0.7915	1.4021	1.6819	1.4884	0.9216	
0.6214	0.4438	0.4134	0.5107	0.7939	1.3984	1.6725	1.4769	0.9059	
-0.5311	-0.8337	-0.2903	0.0783	-0.3023	0.2646	0.5620	0.7787	1.7331	

图 5 BSS-14 基准题组件功率计算结果对比

Fig. 5 Comparison of power distribution of BSS-14 benchmark

4 结 论

为了对 COSINE 软件包中的堆芯物理分析程 序 cosCORE 的准确性进行验证,使用 IAEA_3D 基准题和 BSS-14 基准题进行计算,并将得到的结 果与基准值进行对比。在 IAEA_3D 基准题中, cosCORE 的计算结果与基准值之间,有效增值系 数仅仅相差 0.066 9%,结果吻合得非常好;二者 组件相对功率结果总体一致,其中相对误差最大 为 2.178%,可以认为 cosCORE 计算程序对 IAEA_3D 基准题有足够的计算能力。在 BSS-14 基准题中,cosCORE 的计算结果与基准值 k_{eff} 的 相对误差仅为 0.067 7%,非常吻合;二者组件相 对功率的最大误差为 1.733 1%,非常一致。通过 计算 IAEA_3D 基准题和 BSS-14 基准题,验证了 COSINE 软件包中的堆芯物理分析程序 cosCORE 对轻水堆有足够的计算能力。

参考文献:

- [1] HU Y, CHEN Y, ZHANG B, et al. Development and preliminary verification of reactor shielding design code cosSHIELD of COSINE code package[J]. Energy procedia, 2017, 127:87-95.
- [2] 陈义学,刘占权,胡啸宇,等. COSINE 软件包堆芯物 理分析程序 CORE 开发与初步测试验证[J].原子能 科学技术,2013,47(增刊1):365-368.
- [3] 葛炜,杨燕华,刘飒,等.大型先进压水堆核电站关键 设计软件自主化与 COSINE 软件包研发[J].中国能 源,2016,38(7):39-44.
- [4] 王常辉,胡啸宇,刘占权,等. COSINE 软件包堆芯物 理分析程序在 AP1000 堆芯核设计中的初步应用及 分析[J].原子能科学技术,2013,47(增刊2): 499-502.
- [5] 胡啸宇,王苏,闫宇航,等. 微观燃耗模型在 COSINE 软件包堆芯程序中的研究与应用[J]. 原子能科学技 术,2013,47(增刊2):503-506.
- [6] 李硕,孙业帅,周生诚,等. COSINE 软件包组件程序 中基于 MOC 方法的输运模块开发与初步验证[J]. 原子能科学技术,2013,47(增刊2):515-519.
- [7] Computational Benchmark Problems Committee. Argonne code center benchmark problem book [M]. La Grange Park, Illinois: American Nuclear Society, 1977.
- [8] LOUIS K H. Investigation of the IAEA benchmark problem using MCNP code[J]. Arab journal of nuclear sciences and applications, 2019, 52(1):169-177.