文章编号:1673-0062(2018)02-0007-06

双核铀酰配合物二级散射法检测 ATP

肖锡林,蒋 敏,许 丽,王 娇,廖力夫,何淑倩

(南华大学化学化工学院,湖南 衡阳 421001)

摘 要:建立了一种利用二级散射法不经分离直接测定溶液中 ATP 的新方法.利用间 苯二甲醛与吡咯反应制备一种新型双极双齿配体(isophthalaldehyde-tetrapyrrole, IPTP),该配体与铀酰配位形成双核铀酰配合物,双核铀酰配合物与 ATP 络合形成双 核铀酰配合物-ATP,研究双核铀酰配合物-ATP 体系的光谱特征,影响因素和最佳反 应条件.在最佳条件下二级散射强度与 ATP 的浓度的线性范围是 2.5~500 nmol/L,检 出限为 0.75 nmol/L,此方法已成功用于待测样品中 ATP 的测定. 关键词:双核铀酰配合物;三磷酸腺苷;二级散射 中图分类号:0433.4; TL211 文献标志码;A

Determination of ATPUsing Second-order Scattering Method Based on Binuclear Uranyl Complex

XIAO Xi-lin, JIANG Min, XU Li, WANG Jiao, LIAO Li-fu, HE Shu-qian

(School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China)

Abstract: This paper has established a new method for the direct determination of ATP in solution without separation by the second-order scattering (SOS) method. A dipolar bidentate ligand of isophthalaldehyde-tetrapyrrole (IPTP) was synthesized by the reaction of isophthalaldehyde and pyrrole. The ligand was mixed with uranyl to form binuclear uranyl complex (BUIPTP), then BUIPTP complexes reacted with ATP to form BUIPTP-ATP. The influence factors, the best reaction conditions, and the spectral characteristics of BUIPTP-ATP system were studied. Under the optimum conditions, the linear range between the second-order scattering intensity and the concentration of ATP was 2.5~500 nmol/L with the detection limit of 0.75 nmol/L. The method was successfully applied to the determination of ATP in real samples.

key words: binuclear uranyl complex (BUIPTP); adenosine triphosphate (ATP); second-

作者简介:肖锡林(1978-),男,教授,博士,主要从事环境与生物样品分离分析的研究.E-mail:xiaoxl2001@163.com

收稿日期:2017-12-25

基金项目:国家自然科学基金项目(11475079)

order scattering

0 引 言

三磷酸腺苷(adenosine triphosphate, ATP)是 一种以次黄嘌呤核苷酸为底物,经生物发酵技术 制得的一种高能化合物,是生物体内组织细胞一 切生命活动所需能量的直接来源,被誉为细胞内 能量的"分子通货",能够储存和传递化学能,参 与体内蛋白质、脂肪、糖和核酸的代谢^[1-2].ATP 作 为最重要的能量分子在细胞的各种生理、病理过 程中起着重要作用,可以作为细胞活性的一个重 要标志物.ATP 也常作为检测微生物污染的一个 指标^[34],通过检测 ATP 含量,可以检测食品、水、 药品、化妆品等的微生物污染情况,通过监测活细 胞线粒体内 ATP 含量的变化,可以预测各种药 物、生物制剂或生物活性物质引起的细胞杀伤、细 胞抑制和细胞增殖作用.

目前文献报导检测 ATP 的方法主要有纸层 析法^[5-6],电化学传感器法^[7-8],离子交换色谱^[9], 高效液相色谱^[10-11],分光光度法^[12-15],生物发光 法^[16-17]和基于核酸适体的方法^[18-21]等.这些方法 中有的操作比较繁琐,耗时较长,制备过程复杂, 如纸层析法和电化学传感器法;有的对仪器设备 要求高,且需要特定的酶,如高效液相色谱法和生 物发光法;有的精度低,如离子交换色谱法.因此, 探索新的、灵敏度高的、快速便捷的检测方法对于 检测 ATP 在食品、药品、环境水样中的微生物污 染情况等具有十分重要的意义.

二级散射(second-order scattering, SOS)作为 一种新发展起来的分析技术,因其灵敏度高,简单 便捷的优点引起人们的关注^[22-23],并在金属离 子^[24]、表面活性剂^[25]、蛋白质^[26]、核酸^[27]、药 物[28]及环境样品[29]的检测中得到广泛应用.本课 题组在研究中发现,在中性条件下,双核铀酰配合 物(binuclear uranyl-isophthalaldehyde-tetrapyrrole, BUIPTP)与ATP能形成一种配合物体系,对体系 进行光谱性能测试,发现在体系激发波长的二倍 处出现一个强峰,激发波长位于 566 nm 处,在最 大激发波长处,体系的 SOS 强度随着 ATP 的浓度 的增加存在这线性关系,可用于痕量分析,且该方 法具有较高的灵敏度,检出限为 0.75 nmol/L,其 灵敏度较常见的检测 ATP 的方法要大大的提高. 研究双核铀酰配合物(BUIPTP)与 ATP 的配位反 应对二级散射强度的影响,并对反应条件进行一 系列的优化,得出的结果让人满意.

1 实验部分

1.1 试剂与仪器

仪器:UV-3900 紫外-可见分光光度计(日本 日立),IR Prestige-21 傅立叶变换红外光谱仪(日 本岛津公司),Hitachi-F7000 荧光分光光度计(日 本日立公司),IKA-MAGHS7 恒温加热磁力搅拌 器(广州仪科实验室技术有限公司),DZF-6020 真 空干燥箱(上海三发科学仪器有限公司),pHs-10C 数字酸度计(上海雷磁科学仪器厂),电子分 析天平(瑞士梅特勒-托利多仪器有限公司).

试剂:IPTP 是实验室自制, 六水合硝酸铀酰 是购买于湖北楚盛威化工有限公司, 三磷酸腺苷 (ATP)购买于上海 Aladdin 化学试剂有限公司.

1.2 制备双核铀酰配合物

利用铀酰与双极双齿配体(isophthala ldehyde-tetrapyrrole,IPTP)反应合成了双核铀酰配 合物(见图 1).合成步骤如下:IPTP参照文献 [30]的方法合成;将IPTP(0.366 0g,1.0 mmol) 和六水合硝酸铀酰(0.502 0g,1.0 mmol)溶解在 100 mL体积比为3:1的无水乙醇与水溶液中, 将混合物室温下用磁子搅拌10h使其发生螯合 反应.将溶剂减压除去,得到的固体用无水乙醇洗 涤数次,然后用柱层析进行提纯,所得产物即为纯 的 BUIPTP.

1.3 BUIPTP 溶液的配制

用分析天平准确称量 BUIPTP 固体 0.7400g,经二次蒸馏水溶解,转移至100 mL 容 量瓶,加水定容至刻度线,摇匀,即得10 μmol/L 的 BUIPTP 溶液.

1.4 ATP 的测定步骤

在 10 mL 比色管中加入 500 μL 的 ATP 标准 溶液或样品溶液与 200 μL 的 Tris-Hcl 缓冲液(pH 7).在搅拌下将 100 μL 10 μmol/L 的 BUIPTP 溶 液滴加到上述溶液中,总滴加时间为 10 min,将该 溶液孵育 30 min.在激发波长 283 nm,发射波长 566 nm处用荧光分光光度计测定该体系的二级散 射光谱.在 566 nm 波长处绘制二级散射光强度对 ATP 浓度的标准曲线.在相同的实验条件下,进行 腺苷和其它三种磷酸核苷酸的平行实验.ATP 与 BUIPTP 反应以及检测 ATP 的过程示意图见图 1.

图 1 ATP 与 BUIPTP 反应和检测 ATP 的过程示意图 Fig.1 The reaction of ATP with BUIPTP and the illustrated procedure of ATP detection

2 结果与讨论

2.1 二级散射光谱特征

图 2 为 BUIPTP 与不同浓度的 ATP 溶液的二级散射光谱图.当体系中不存在 ATP 时,溶液的二级散射强度较弱.当加入 ATP 溶液后,体系的二级散射强度增强.因为 ATP 与 BUIPTP 形成大的空间体积,使得二级散射强度增强.在最佳条件下,BUIPTP-ATP 体系二级散射增加的强度与一定范围的 ATP 浓度呈现线性关系.因此,可以利用由 ATP 和 BUIPTP 引起的反应来建立二级散射光谱法检测 ATP.选定在 566 nm 处检测 ATP 的二级散射光强度.

2.2 酸度的影响

我们首先研究了溶液的酸度对体系二级散射 强度的影响.由图 3 可看出,随着 pH 值增大,二级 散射强度出现先增强而后降低现象.pH 为 7 时, 体系的二级散射强度最大.结果显示,在中性介质 中该反应的效果是最好的.究其原因可能是在强 酸性介质中 ATP 的氨基质子化,导致 ATP 与 BUIPTP 结合的亲和力减弱.当 pH 值高于 7.0 时, 溶液中的氢氧根离子会与 ATP 竞争结合 BUIPTP.因此,采用 pH 7 的 Tris-HCl 缓冲溶液.

Fig.2 The second-order scattering of ATP as BUIPTP system

2.3 反应时间的影响

按照实验方法测定了体系在 0~50 min 内, 考察反应时间对体系二级散射强度的影响,结果 显示:反应在达到 30 min 后二级散射强度即达到 最大,并在 30~50 min 内几乎保持不变(如图 4). 本实验选择反应 30 min 后测定.

Fig.3 Effect of pH on the second-order scattering

Fig.4 Effect of reaction time on the secondorder scattering

2.4 ATP 和 BUIPTP 加入顺序的影响

测试了 ATP 和 BUIPTP 加入顺序的影响.结 果表明,将 BUIPTP 滴加到 ATP 溶液时的二级散 射信号比 ATP 滴加到 BUIPTP 溶液时的更强.可 能是因为 BUIPTP 滴加到 ATP 溶液中时,BUIPTP 与 ATP 的反应物质的量之比为1:2.但是将 ATP 滴加到 BUIPTP 溶液时,BUIPTP 与 ATP 以物质 的量之比为1:2和1:1同时进行反应,这使得二 级散射信号稍微较弱.所以本研究选择将 BUIPTP 滴加到 ATP 溶液.

2.5 标准曲线、检出限和精密度实验

在最优实验条件下,对不同浓度 ATP 的二级 散射强度进行了测定,并作出了校正曲线.如图 5, 该标准曲线表明,ATP 浓度在 2.5~500 nmol/L范围 内,二级散射强度(*I*sos)与 ATP 浓度(*c*)之间具有 良好的线性关系.线性回归方程为: ΔI_{sos} = 548+7.98 c (nmol/L),相关系数 r = 0.999 1.平行测定 11 份 空白溶液,根据检出限公式 F_{LOD} = $3S_b/m(S_b$ 为空白 标准偏差, m 为工作曲线的斜率),检出限为 0.75 nmol/L.分别对 ATP 浓度为 100 nmol/L 和 300 nmol/L两组待测液进行六次平行测定,相对标 准偏差分别为 2.56%和 2.03%.

2.6 选择性试验

为了研究实验的选择性,我们使用单独的三 磷酸腺苷(ATP)和单独的磷酸根进行比较(见图 6).

结果表明,当浓度相同时,单独存在 ATP 时的 *I*_{RLS}值比单独的磷酸根存在时的 *I*_{RLS}值高,并且当 ATP 与磷酸根共存时与单独存在 ATP 时的

*I*_{RLS}值大致相同.说明该方法对 ATP 具有很好的选择性,进一步证明 BUIPTP 中的铀酰能特异性地结合 ATP 中的磷酸基团和腺苷.

2.7 共存物质的影响

在选定条件下,我们对体系进行了共存物质 影响的干扰情况研究.结果见表 1,表中所列的相 对误差在±5%的范围内,基本对 ATP 的测定无 干扰.

表 1 共存物质的影响 Table 1 The impact of coexisting substances

共存物质	浓度 c/ (mol・L ⁻¹)	$ riangle I_{ m F} / \%$
葡萄糖	5.00×10^{-4}	4.2
蔗糖	1.00×10^{-4}	-3.6
腺苷	2.00×10^{-5}	2.7
淀粉	1.80×10^{-6}	1.9
乳糖	1.00×10^{-5}	0.9
糊精	2.00×10^{-6}	3.2

2.8 实际样品的检测

使用该法对实际注射药剂样品中的 ATP 和 药片中的 ATP 含量进行了测定.使用二次蒸馏水 稀释 ATP 注射液到合适的浓度.将 ATP 药片研磨 成粉末,用分析天平精确称取一定量的粉末后用 二次蒸馏水稀释至所需浓度.按照以上实验步骤 对稀释后的样品中的 ATP 进行测定.为了评估该 方法的实用性和可靠性,本研究进行了标准浓度 的 ATP 回收实验.由表 2 可知,样品平行测定的 RSD 都低于 2.5%,回收率在 99.0%~101.0%范围 内(*n*=6).结果表明,该研究方法可以成功应用于 实际样品中 ATP 的检测,并且具有较好的回 收率.

表 2 实际样品分析(n=6) Table 2 Analysis of real samples(n=6)

	-	-		
而日				
坝日	药片1	药片 2	注剂 1	注剂 2
平均值/(nmol・L ⁻¹)	0.193	0.204	0.216	0.179
RSD/%	2.300	1.900	2.200	2.400
加入量/($nmol \cdot L^{-1}$)	0.200	0.200	0.200	0.200
检测量/($nmol \cdot L^{-1}$)	0.395	0.403	0.417	0.377
回收率/%	101.0	99.5 1	00.5	99.0

3 结 论

在本实验研究中,建立了一种新的二级散射

法不经分离直接检测 ATP.该方法是基于 ATP 和 BUIPTP 反应生成的配合物而引起二级散射增强 这一原理建立的.该分析方法具有简单方便、灵敏 度高、亲和力高、对 ATP 的特异性以及不经过分 离操作过程等优点.该方法可为其他类似目标分 析物如 CTP、GTP 等的检测提供一种新的思路,并 且在生物化学、医学、环境学等领域具有重要的潜 在应用价值.

参考文献:

- [1] AGTERESCH H J, DAGNELIE P C, BERG J W, et al. Adenosine triphosphate[J].Drugs, 1999, 58(2):211-232.
- [2] KUCHERENKO I S, KUCHERENKO D Y, SOLDATKIN O O, et al.A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate [J]. Talanta, 2016, 150: 469-475.
- [3] LIEBERS V, BACHMANN D, FRANKE G, et al. Determination of ATP-activity as a useful tool for monitoring microbial load in aqueous humidifier samples [J]. International journal of hygiene and environmental health, 2015, 218(2):246-253.
- [4] TIAN Y, HOU Y Z, KE R H, et al. Study on ATP content difference of six common strains by ATP bioluminescence method[J]. Food and fermentation industries, 2015, 41(1):220-224.
- [5] KIENHUIS H, VERWEIJ A.Paper chromatography of diastereoisomeric tetrapeptide derivatives:short communication[J].Recueil des travaux chimiques des Pays-Bas,2015,83(3):223-225.
- [6] VAN DUUREN A J.The determination of organic acids in plant material by means of paper chromatography[J].Recueil des travaux chimiques des Pays-Bas, 2015, 72(10):889-892.
- [7] BAO T, SHU H, WEI W, et al. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy [J]. Analytica chimica acta, 2015, 862: 64-69.
- [8] GOPINATH S C B, PERUMAL V, BALAKRISHNAN S R, et al. Aptamer-based determination of ATP by using a functionalized impedimetric nanosensor and mediation by a triangular junction transducer[J].Microchimica acta, 2017, 184(11):4425-4431.
- [9] BARTOLINI M, WAINER I W, BERTUCCI C, et al. The rapid and direct determination of ATP-ase activity by ion exchange chromatography and the application to the activity of heat shock protein-90 [J]. Journal of pharmaceutical and biomedical Analysis, 2013, 73(2):77-81.
- [10] TANG S F,QIAN Z Z,LUO F F, et al.Determination of ATP-related compounds in aquatic products by high performance liquid chromatography[J].Progress in fishery sciences, 2014, 35(2): 110-116.
- [11] ZHU H, DANNI W U, WANG H. Quantification of intracellular adenosine 5'-triphosphate and its metabolites by high performance liquid chromatography analysis[J]. Chinese journal of chromatography, 2017,35(1):54-58.
- [12] OTO N, OSHITA S, MAKINO Y, et al. Non-destructive evaluation

of ATP content and plate count on pork meat surface by fluorescence spectroscopy[J].Meat science, 2013, 93(3);579-585.

- [13] HE Y, LIAO L, XU C, et al. Determination of ATP by resonance light scattering using a binuclear uranyl complex and aptamer modified gold nanoparticles as optical probes [J]. Microchimica acta, 2015, 182(1/2);419-426.
- [14] LIAN Y, JIANG H, FENG J, et al.Direct and simultaneous quantification of ATP, ADP and AMP by (1) H and (31) P nuclear magnetic resonance spectroscopy[J]. Talanta, 2016, 150;485-492.
- [15] WANG Y M, LIU J W, DUAN L Y, et al. Aptamer-based fluorometric determination of ATP by using target-cycling strand displacement amplification and copper nanoclusters [J]. Microchimica acta, 2017, 184(10):4183-4188.
- [16] PACIELLO L, FALCO F C, LANDI C, et al.Strengths and weaknesses in the determination of Saccharomyces cerevisiae cell viability by ATP-based bioluminescence assay[J].Enzyme and microbial technology, 2013, 52(3):157-162.
- [17] ARROYO M G,FERREIRA A M,FROTA O P, et al.Effectiveness of ATP bioluminescence assay for presumptive identification of microorganisms in hospital water sources[J].Bmc infectious diseases, 2017,17(1):458.
- [18] ZHENG X F, PENG R Z, JIANG X, et al.Fluorescence resonance energy transfer-based DNA nanoprism with a split aptamer for adenosine triphosphate sensing in living cells[J].Analytical chemistry, 2017, 89(20):10941-10947.
- [19] XU J, WEI C. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation[J]. Biosensors and bioelectronics, 2017, 87:422-427.
- [20] SONG Q, WANG R, SUN F, et al.A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles[J].Biosensors and bioelectronics, 2017, 87;760-763.
- [21] JI D Y, WANG H Q, GE J, et al. Label-free and rapid detection of ATP based on structure switching of aptamers[J]. Analytical

biochemistry, 2017, 526:22-28.

- [22] LI C X, LIU S P, LIU Z F, et al. Resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectra of interaction of furosemide with Ag(I) and their analytical applications [J]. Chemical journal of Chinese universities, 2011, 32 (2):252-257.
- [23] DUAN H, LIU Z F, LIU S P, et al. Resonance Rayleigh scattering, second-order scattering and frequency doubling scattering methods for the indirect determination of penicillin antibiotics based on the formation of Fe₃ [Fe(CN)₆]₂ nanoparticles [J]. Talanta, 2008, 75(5):1253-1259.
- [24] 樊玮鑫,高雪敏,李生泉.金橙G二级散射增敏法测定痕量
 铁(Ⅲ)[J].分析试验室,2013,32(5):107-110.
- [25] 王朱良.环境中阴离子表面活性剂检测方法研究进展[J].日 用化学品科学,2011,34(12):31-33.
- [26] LIU S P, YANG Z, LIU Z F, et al. Resonance Rayleigh-scattering method for the determination of proteins with gold nanoparticle probe[J]. Analytical biochemistry, 2006, 353(1):108-116.
- [27] DING F,ZHAO H C,XIA L Y,et al. The second-order scattering study of the Tb(III)-RNA and determination of RNA[J].Spectrochimica acta part A: molecular and biomolecular spectroscopy, 2005,62(1/2/3);377-382.
- [28] GE S G, JIAO X L, CHEN D R.Study on the second order scattering spectrum of new type rhodanine derivative-neomycin in micromulsion[J].Luminescence, 2012, 27(2):116-117.
- [29] MANDYLA S P, TSOGAS G Z, VLESSIDIS A G, et al. Determination of gold nanoparticles in environmental water samples by second-order optical scattering using dithiotreitol-functionalized CdS quantum dots after cloud point extraction [J]. Journal of hazardous materials, 2017, 323:67-74.
- [30] 肖锡林,许丽,王娇,等.新型双极双齿配体的合成及其与 铀酰离子相互作用的共振光散射[J].南华大学学报(自然 科学版),2017,31(2):79-81.

(责任编辑:扶文静)