文章编号:1673-0062(2016)03-0040-04

Y₂O₃/GeO₂/环氧树脂基辐射防护材料的制备及性能研究

代旭之,肖德涛*

(南华大学 核科学技术学院,湖南 衡阳 421001)

摘 要:用表面处理稀土氧化物 Y₂O₃, GeO₂的方法制备了 Y₂O₃/GeO₂/环氧树脂辐射防护材料.采用 X 射线衍射仪(XRD)研究了材料的微观结构;用多道 γ 谱仪测试并分析了材料的辐射防护能力.结果表明,制得的材料中的 Y₂O₃和 GeO₂ 粒子并未与 环氧树脂发生键和反应,Y₂O₃与 GeO₂粉末的加入明显提升了材料防护射线的效果.
 关键词:辐射防护;屏蔽性能;Y₂O₃;GeO₂
 中图分类号:X591 文献标识码:B

Preparation of Y₂O₃/GeO₂/Epoxy Resin Based Multilayer Radiation Shielding Material and its Property Research

DAI Xu-zhi, XIAO De-tao*

(School of Nuclear Science and Technology, University of South China, Hengyang, Hunan 421001, China)

Abstract: $Y_2O_3/GeO_2/Epoxy$ Resin Based Multilayer Radiation Shielding Material was prepared for radiation protection via route of surface treatment on Y_2O_3 and GeO_2 . The material's microstructure was studied by X-ray diffraction (XRD); Radiation shielding property was calculated by gamma energy spectrum system. Results show that the obtained materials of Y_2O_3 and GeO_2 particles was not with the key and the reaction of epoxy resin, the material's shield capability is significantly improved by addition of Y_2O_3 and GeO_2 powder.

key words: radiation protection; shield capability; Y_2O_3 ; GeO₂

随着国防科研、放射性医学和原子能工业的 不断发展,人类广泛应用各种放射性射线的同时 也逐渐认知和重视到射线对人体的伤害和环境的 破坏,辐射防护材料在越来越多的领域得到应用, 对辐射防护材料的各方面性能也提出了更高的要 求,传统的辐射防护材料已经难以满足要求.如混 凝土太过笨重、可移动性差;铅有毒,易挥发,存在 弱吸收区;硼对热中子吸收性能递减等.为克服由 此带来的挑战,无毒、质轻、物理性质优异、屏蔽效 果好且性能持久的新型防辐射材料的研究便成为

收稿日期:2016-04-16

作者简介:代旭之(1988-),男,湖南常德人,南华大学核科学与技术学院硕士研究生.主要研究方向:核科学与技术. * 通讯作者.

一项十分重要和迫切的课题.国内外对辐射屏蔽 材料已进行了大量的研究^[1-5],很多屏蔽材料已得 到广泛的应用,其中几种主要类型的屏蔽复合材 料有屏蔽混凝土^[6-7]、硼钢^[8-9]、铅硼聚乙烯^[9]、 Al—B₄C复合材料^[8]、PVC-PE复合材料等.

复合材料的防护射线的性能主要取决于复合 材料的密度、填充物在基体分布的均匀性、填充物 的原子序数及入射射线的能量等.能量较高的射 线在通过防护材料时主要是发生康普顿散射而变 为低能射线,而低能射线在通过材料时光电效应 将成为主要机制,当入射射线的能量只比物质内 层电子结合能稍高时材料了对射线的吸收会突然 增大称为边界吸收,这对提高材料辐射防护性能 是至关重要的.传统高原子序数物质 K 层吸收边 较高,铅对能量介于 40~88 keV 的射线的吸收能 力较弱,即 Pb 的弱吸收区,而通常医用射线以及 核电厂部分工作场所绝大多数射线的能量低于 88 keV,显然,将铅作为吸收这些射线的物质存在 弊端.稀土元素 K 层吸收边比较低,其对能量介于 50~100 keV 的射线有更好的屏蔽效果.

环氧树脂是复合材料中常用的基底,环氧树脂 本身具有很好的耐辐射性能,能应用于苛刻的辐射 环境之中,本实验以环氧树脂为基体、以稀土氧化 物 Y₂O₃,GeO₂ 为功能粒子制备了辐射防护材料.

1 实验部分

1.1 试剂与仪器

试剂:环氧树脂 E-44,聚酰胺树脂-650 型固 化剂,有机硅偶联剂 kh-560,纳米氧化钇(纯度 99.9%,30 nm),纳米氧化锗(纯度 99.9%, 20 nm),凡士林,丙酮.

仪器:超声分散器;磁力搅拌器;真空干燥箱; 铜靶 X 射线衍射仪(XRD);Nal 能谱探测系统.

1.2 复合材料的制备

第一步:用表面处理法分别处理 Y₂O₃ 和 GeO₂ 粉末,分称量 Y₂O₃ 和 GeO₂ 各 0 g、2.5 g、 3.5 g、5 g 溶解于丙酮中,并加入 2 g 有机硅偶联 剂 kh-560,将其于 50 ℃超声分散 0.5 h,然后用磁 力搅拌器搅拌 0.5 h.

第二步:向经过修饰的纳米粉末中加入 12 g 环氧树脂 E-44,用磁力搅拌器于 50 ℃搅拌 1 h.加 入 8 g 聚酰胺树脂-650 型固化剂于 45 ℃继续搅 拌 0.5 h.

第三步:将样品倒入表面涂有凡士林圆柱形 石墨模具中,放入真空干燥箱中在40℃条件下真 空固化10h.将固化好的样品脱模取出.分别得到 样品P、A、B、C.图1为样品P、A、B、C外观及固化 所用模具.

图 1 样品外观 a 及所用模具 b Fig.1 Sample appearance a and the mold b

根据环氧树脂,固化剂,纳米粉末,偶联剂及 所占的百分比可以计算出样品 P、A、B、C 中各元 素的质量占样品总质量的百分比.通过样品的尺 寸计算出样品的体积,通过电子秤称出样品的重 量,从而求样品的密度.钇元素及锗元素所占比例 及样品密度数值见表 1.

表1	样品中钇及锗元素所占比例及样品密度	

F.L. 1	The management of				41	
radie r	The proportion of	yttrium and	germanium in th	ie sample and	the sample's density	Ý

样品	氧化钇/g	氧化锗/g	钇/%	锗/%	密度/(g・cm ⁻³)
Р	0	0	0	0	1.00
А	2.5	2.5	6.09%	5.37%	1.13
В	3.5	3.5	7.74%	6.82%	1.25
С	5.0	5.0	9.55%	8.42%	1.37

1.3 材料结构表征

Y₂O₃和 GeO₂粒子在复合材料合成前后的晶体结构用铜靶 X 射线衍射仪 TD-3500型进行测定,粉末法制样.

1.4 屏蔽性能测试

以⁶⁰Co、¹³⁷Cs、²³⁸Pu 作放射源,采用 NaI 伽玛 谱仪,用能谱方法测试材料的屏蔽性能,实验测试 装置如图 2 所示.实验方法为分别对介质为空气 和样品的全能峰进行计数(采集时长为150 s),记 为 N_0 和 N_1 ,利用全能峰计数通过式(1)计算样品 的线性衰减系数及式(2)计算样品的质量衰减 系数:

$$\mu = \frac{\ln(N_0/N_1)}{I} \tag{1}$$

 $\mu_m = \mu/\rho \tag{2}$

d 为样品的厚度, d=2.2 cm.ρ 为样品的密度.

Fig.2 Shielding performance test device

2 结果与讨论

2.1 XRD 表征

图 3 为氧化锗粉末与氧化钇粉末及氧化钇/ 氧化锗/环氧树脂复合材料 XRD 图.可以看出, X-射线衍射曲线的形状完全一致,峰的位置相同, 曲线的高度不同.这说明氧化锗与氧化钇的晶型 在复合材料成型前后没有发生变化,可以推断氧 化锗与氧化钇并未与环氧树脂发生键和反应,而 只是机械的混合在环氧树脂中.

图 3 氧化锗与氧化钇及氧化钇/氧化锗/环氧树脂符合材料 XRD 曲线 Fig.3 XRD curves of GeO₂/Y₂O₃ and Y₂O₃/GeO₂/epoxy resin

2.2 屏蔽性能分析

表 2 为伽玛谱实验得出的全能峰计数以及通 过式(1)计算得出的线性衰减系数,其中 N_0 为空 气介质的计数, N_p 为纯环氧树脂样品在前得到的 计数, N_A 为 A 样品在前得到的计数, N_B 为 B 样品 在前得到的计数, N_c 为 C 样品在前得到的计数, 由表 2 的数据可以看出纳米氧化钇和氧化锗 的加入明显增强了环氧树脂的屏蔽性能,并且屏 蔽性能与纳米氧化钇和氧化锗的量成正相关. 纪 元素与锗元素在材料中的质量分数是影响复合材 料屏蔽性能的决定性因素. 鉴于 14.39 m⁻¹的线性 衰减系数也不是很理想. 这可能是因为纳米氧化 钇和纳米氧化锗的量较少及它们的 K 吸收边都 在 40~50 keV 之间, 而 663.8 keV 与 1170 keV 离 纳米氧化钇和纳米氧化锗的 K 层吸收边太远, 致 使复合材料的吸收能力不强.

表 2 伽玛谱实验数据 Table 2 Experimental data of gamma spectrum

放射源	能量/keV	N_0/\uparrow	$N_{\rm P}/\uparrow$	$N_{\rm A}/\uparrow$	$N_{\rm B}/\uparrow$	$N_{\rm c}/\uparrow$	$\mu_{ m P}/{ m m}^{-1}$	$\mu_{\text{A}}/\text{m}^{-1}$	$\mu_{\scriptscriptstyle m B}/{ m m}^{-1}$	$\mu_{ m C}/{ m m}^{-1}$
⁶⁰ Co	1 170	42 798	37 020	34 725	33 438	31 475	6.59	9.50	11.22	13.96
137 Cs	663.8	76 720	63 375	60 487	58 947	55 904	8.69	10.81	11.98	14.39
²³⁸ Pu	79.9	24 958	18 165	17 357	15 481	12 939	14.44	16.51	21.71	27.37

表 3 为伽玛谱实验得出的全能峰计数以及通过 式(2)计算得出的质量衰减系数,其中μ_{mp}为纯环氧 树脂样品的质量衰减系数,μ_{ma}为 A 样品的质量衰减 系数,μ_{mb}为 B 样品的质量衰减系数,μ_{mc}为 C 样品的 质量衰减系数,μ_{mPb}为 Pb 的质量衰减系数,由表 2 的 数据可以看出纳米氧化钇和氧化锗的加入明显提高 了环氧树脂的质量衰减系数,在 79.9 keV 射线的屏蔽实验中样品 C 与铅的质量衰减系数已经相差不多,这说明 Y₂O₃/GeO₂/环氧树脂基辐射防护材料在

低能区替代铅是完全可行的,可以推断进一步增加 纳米氧化钇和氧化锗的填充量,其质量衰减系数在 79.9 keV 处完全可以超过铅.

表 3 各样品的质量衰减系数 Table 3 mass attenuation coefficient of each sample

能量/keV	$\mu_{\rm mp}/({ m cm}^2\cdot{ m g}^{-1})$	$\mu_{\rm ma}/({ m cm}^2\cdot{ m g}^{-1})$	$\mu_{\rm mb}/({ m cm}^2\cdot{ m g}^{-1})$	$\mu_{\rm mc}/({ m cm}^2\cdot{ m g}^{-1})$	$\mu_{\mathrm{mPb}}/(\mathrm{cm}^2\cdot\mathrm{g}^{-1})$
1170	0.659	0.841	0.898	1.019	4.850
663.8	0.869	0.957	0.958	1.050	10.582
79.9	1.444	1.461	1.737	1.998	2.381

3 结 论

添加纳米氧化钇和纳米锗氧化物的功能粒子 可以有效地改善环氧树脂基的辐射防护材料的屏 蔽性能,加入的氧化锗与氧化钇并未与环氧树脂 发生键和反应,而只是混合在环氧树脂中.提高材 料中钇和锗元素的质量分数是提高复合材料屏蔽 性能至关重要的因素,在 79.9 keV 附近样品 C 的 质量衰减系数已经接近铅,这说明 Y₂O₃/GeO₂/环 氧树脂基辐射防护材料在低能射线的防护上是完 全可以替代铅的.

参考文献:

- [1] 张瑜,戴耀东,常树全.聚丙烯酸铅辐射防护材料的制 备及性能研究[J].物理学报,2009,58(9):713-717.
- [2] 刘力,张立群,金日光.稀土/高分子复合材料的研究 进展[J].中国稀土学报,2001,9(3):193-199.
- [3] 安骏,吴海霞,辛寅昌.防高能辐射的树脂/纳米铅复

(上接第35页)

- [9] Liu Z, Lei H Y, Bai T, et al. Microwave-assisted arsenic removal and the magnetic effects of typical arsenopyritebearing mine tailings[J]. Chemical engineering journal, 2015,272;1-11.
- [10] Ma S J, Luo W J, Mo W, et al. Removal of arsenic and sulfur from a refractory gold concentrate by microwave heating[J]. Minerals engineering, 2010, 23(1):61-63.
- [11] Al-Harahsheh M, Kingman S W. Microwave-assisted leaching-a review [J]. Hydrometallurgy, 2004, 73 (3/ 4):189-203.
- [12] Amankwah R K, Ofori-Sarpong G. Microwave heating of gold ores for enhanced grindability and cyanide amenability[J].Minerals engineering.2011,24(6):541-544.
- [13] Nanthakumar B, Pickles C A, Kelebek S.Microwave pretreatment of a double refractory gold ore [J]. Minerals engineering, 2007, 20(11):1109-1119.
- [14] 谷晋川,刘亚川,谢扩军,等.难选冶金矿微波预处理 研究[J].有色金属,2003,55(2):55-57.
- [15] Senanayake G.Gold leaching by copper (II) in ammo-

合材料的制备及研究[J].工程塑料应用,2004,32 (12):14-17.

- [4] 廖伶元,邱小平.屏蔽材料组分含量的优化设计[J]. 核电子学与探测技术,2010,30(1):118-120.
- [5] Spillantini P, Casolino M, Durante M, et al. Shielding from cosmic radiation for interplanetary missions: Active and passive methods[J].Radiation Measurements, 2009, 42(1):14-23.
- [6] Sercombe T B.Sintering of freeformed maraging steel with boron addition[J].Mater Sci Eng:A,2003,363(1/2):242-252.
- [7] Akkurt I, Akyildirim H, Mavi B, et al. Gamma-ray shielding properties of concrete including barite at different energies [J].Progress Nuclear Energy, 2010, 52(7):620-623.
- [8] Arslan G, Kara F, Turan S. Reaction model for the boron carbide/aluminium system [J]. Key Eng Mater, 2004, 264-268:1059-1065.
- [9] Erdem M, Baykara O, Dogru M, et al. Anovel shielding material prepared from solid waste containing lead for gamma ray[J].Radiation Phys Chem, 2010, 79(9):917-922.

niacal thiosulphate solutions in the presence of additives.Part I: A review of the effect of hard-soft and Lewis acid-base properties and interactions of ions[J]. Hydrometallurgy,2012,115-116:1-20.

- [16] Ha V H, Lee J C, Jeong J, et al. Thiosulfate leaching of gold from waste mobile phones [J]. Journal of hazardous materials, 2010, 178 (1-3):1115-1119.
- [17] 李峰,丁德馨,胡南,等.难处理含金硫精矿的焙烧氧化-硫代硫酸盐浸出[J].中国有色金属学报,2014,24(3):831-837.
- [18] 钟蓓,杨明香.泡塑吸附原子吸收法测金探讨[J].贵 州地质,2007,24(3):244-246.
- [19] 张念炳,白晨光,邓青宇.高硫铝土矿微波焙烧预处理 [J].重庆大学学报(自然科学版),2012,35(1):81-85.
- [20] 魏莉,屈战龙,朴慧京.微波焙烧预处理难浸金矿物 [J].过程工程学报,2009,9(s1):56-60.
- [21] 王一雍,张廷安,陈霞,等.微波焙烧对一水硬铝石矿 浸出性能的影响[J].过程工程学报,2007,7(2): 317-321.