文章编号:1673-0062(2016)01-0033-06

K₂分子 Autler-Townes 分裂的理论研究

冯小静,白静,郭玮*

(南华大学 电气工程学院,湖南 衡阳 421001)

摘 要:利用三态模型和含时波包法,研究了三态阶跃型 K₂分子在泵浦—探测激光场中场强、波长对光电子能谱 Autler-Townes (AT)分裂的影响.首次量化了 AT 分裂的峰移和间距.共振时光电子能谱为对称双峰,失谐时为不对称双峰.AT 分裂间距随泵 浦场强增强而增大,但不随探测场强改变而改变.AT 分裂间距因泵浦波长不同而不等,但不因探测波长不同而改变.随着泵浦波长偏离共振,光电子能谱逐渐由双峰变 为单峰.

关键词:Autler-Townes 分裂;含时波包法;三态阶跃型 K₂分子
中图分类号:0644
文献标识码:A

Theoretical Investigation on Autler-Townes Splitting of K₂ Molecule

FENG Xiao-jing, BAI Jing, GUO Wei*

(School of Electrical Engineering, University of South China, Hengyang, Hunan 421001, China)

Abstract: The effects of laser intensities and laser wavelengths on Autler-Townes (AT) splitting of photoelectron spectra of three-level ladder K_2 molecule driven by a pump-probe pulse was investigated via employing the time-dependent wave packet approach. Their effects on peak shift and AT separation was quantified by using an analytical fitting function. The AT separation increases with pump intensities, but does not vary with probe intensities. The AT separation changes with pump wavelengths, but does not change with probe wavelengths. The double peaks are transformed into one peak progressively as the pump is detuned from the resonance.

key words: Autler-Townes splitting; time-dependent wave packet approach; three-level ladder K₂ molecule

收稿日期:2015-03-23

基金项目:国家自然科学基金资助项目(11447020);湖南省自然科学基金资助项目(2015JJ3104)

作者简介:冯小静(1988-),女,湖北黄冈人,南华大学电气工程学院硕士研究生.主要研究方向:超快动力学.*通讯 作者.

Autler-Townes(AT)分裂是强场光与物质相 互作用的非线性现象之一.研究发现激光场 强^[1-12],波长^[1-3,5,8-11],脉宽^[6],脉冲形状^[11-12]和延 时^[4,8]影响AT分裂.理论和实验上已有对不同构 型的多态原子/分子体系的研究.

与两激光场作用的三态体系是量子光学和激 光光谱学中研究最为广泛的对象.通过泵浦--探 测技术可观测到 AT 双分裂.Du^[1]等和 Wilson^[2] 等指出了 Λ 型原子/分子的电磁诱导透明(Electromagnetically induced transparency, EIT)共振中 AT 分裂对耦合场失谐或微波场失谐的依赖性. Peng 和 Zheng^[3]研究了 V 型体系单量子点的相 干光谱,认为泵浦场强和失谐影响 AT 双峰的间 距,位置和相对峰高.Wollenhaupt 等^[4]在实验上 观察到阶跃型 K 光电子能谱的 AT 双分裂,并且 研究了泵浦场强和延时对 AT 分裂的影响.他们认 为不对称分裂是由非共振激发引起的,分裂间距 随场强的增大而增大.Chang 等^[5]研究了阶跃型 Cs的EIT 双峰随泵浦波长的变化,他们认为增大 泵浦失谐可以增大 EIT 双峰间距,改变中心位置 的位移,改变双峰的相对位置.Sun 和 Lou^[6]研究 了泵浦场强和脉宽对阶跃型 Na,的 AT 双分裂的 影响.长脉宽可能导致不对称双峰.Yuan 等^[7]研究 了分子转动和取向对阶跃型 Na,的 AT 双分裂的 影响.Liu 等^[8]认为探测波长和延时影响阶跃型 Li,的 AT 双分裂的相对峰高.Yao 等[9-10]研究了阶 跃型 K,的 AT 双分裂,认为泵浦场强和波长决定 分裂间距和峰高,但他们没有对这些影响进行 量化.

以上关于 AT 分裂对场强和波长依赖性的研 究对象多是三态 V型, Λ型和阶跃型原子.很少关 于阶跃型 K₂分子的研究.本文利用含时波包法, 研究了三态阶跃型 K₂分子在泵浦—探测激光场 中场强,波长对光电子能谱 AT 分裂的影响.分别 研究了共振激光场,近共振激光场和远共振激光 场这三种情况下 AT 分裂的特点.我们首次量化了 这些因素对峰移和 AT 间距的影响.

1 基本理论

本 文 采 用 K₂ 分 子 的 三 态 模 型: 基 态 | $X \rangle (| X \rangle^{1} \sum_{g}^{+}),$ 激发态 | $B \rangle (| B \rangle^{1} \sum_{g}^{+}),$ 和电 离态 | $X^{+} \rangle (| X^{+} \rangle^{2} \sum_{g}^{+})^{[9\cdot10]}.$ 计算中忽略分子的 旋转自由度.势能曲线取自文献[13],如图 1 所示.

箭头分别表示激发能 1.937 eV (640 nm) 和 2.695 eV (460 nm) 图 1 K₂分子的势能曲线图

Fig.1 Potential energy curves of K₂ molecule used in the work

采用波恩—奥本海默近似,分子波函数 Ψ 满 足含时薛定谔方程

$$i\hbar \frac{\partial}{\partial t} \Psi = H\Psi \tag{1}$$

系统的哈密顿量 H 可以写为

$$H = H_s + H' = T + V + H'$$
(2)

其中, *T* 是核的动能算符, *V* 是系统的势能算符, *H*' 是 K₂分子与激光场的相互作用项.对此三态模型, 波函数 **Ψ**可以写成如下形式

$$\Psi = (\psi_{\rm X}, \psi_{\rm B}, \psi_{\rm ion})^{\rm T}$$
(3)

其中, ψ_X , ψ_B , ψ_{ion} 分别是基态 | X >,激发态 | B >,和电离态 | X⁺ > 的波函数.电离态 | X⁺ > 是 一个连续态,根据出射光电子的能量, ψ_{ion} 可以转 化成一系列的准连续态,其表示形式为

$$\boldsymbol{\psi}_{\text{ion}} = (\boldsymbol{\psi}^{(1)}, \boldsymbol{\psi}^{(2)}, \cdots, \boldsymbol{\psi}^{(N)})^{\mathrm{T}}$$
(4)

其中,N 表示 K_2 分子电离态的数目. 动能算符 T 可以表示为

$$T = -\frac{\hbar}{2\mu} \frac{\partial^2}{\partial R^2} \begin{pmatrix} 1 & 0 & \theta \\ 0 & 1 & \theta \\ \partial & \partial & \Pi \end{pmatrix}$$
(5)

其中, μ 是K₂分子的折合质量,R是核间距,

 $\theta = (0,0,\dots,0)$ 是一个 N 维的零向量, $\tilde{\theta}$ 是 θ 的转置向量, Π 是一个 N × N 维的单位矩阵.

势能算符 V 可以表示为

分子与激光场的相互作用项 H' 可表示为

$$H' = \begin{pmatrix} 0 & W_{\rm XB} & 0 \\ W_{\rm XB} & 0 & W_{\rm Bi} \\ 0 & \widetilde{W}_{\rm Bi} & \Lambda \end{pmatrix}$$
(7)

其中, $W_{Bi} = (W_{Bi}^{(1)}, W_{Bi}^{(2)}, \dots, W_{Bi}^{(N)})$ 是一个 N维行向量, 向量元表示激发态 | B〉和电离态 | X^* 〉 在激光场作用下的耦合, Λ 是一个 $N \times N$ 维的零矩 阵.两个电子态在外场下的耦合可以表示为

$$W_{\rm XB} = \hbar R_1(R) \cos(\omega_1 t) \tag{8}$$

$$W_{\rm Bi} = \hbar R_2(R) \cos[\omega_2(t - \Delta t)] \qquad (9)$$

其中,
$$R_1 = \frac{1}{\hbar} \mu_{XB}(R) \cdot e_1 f_1(t)$$
 和 $R_2 =$

 $\frac{1}{\hbar}\mu_{Bi}(R) \cdot e_2 f_2(t)$ 分别泵浦激光场和探测激光场的 Rabi 频率, $\mu_{XB}(R)$ 和 $\mu_{Bi}(R)$ 分别表示基态 $|X\rangle$ 和激发态 $|B\rangle$,激发态 $|B\rangle$ 和电离态 $|X^*\rangle$ 之间的跃迁偶极矩, e_1 和 e_2 分别表示泵浦和探测 激光场的幅值, ω_1 和 ω_2 是它们的角频率,它们的 包络采取高斯形式分别为

 $f_1(t) = \exp[-4\ln 2 \cdot (t/\tau)^2], f_2(t) = \exp[-4\ln 2 \cdot ((t-\Delta t)/\tau)^2].\tau 是脉宽,本文计$

算取值 30 fs.

能量分辨光电子能谱[10-17].

$$P(\xi^{(i)}) = \lim_{t \to \infty} \int dR | \psi^{(i)}(R, t, \xi^{(i)}) |^{2}$$
(10)

跃迁偶极矩取自文献[9-12], $\xi^{(i)}$ 的取值范围为 0~1.2 eV,电离态数目 N 等于 120.采用分裂算符—傅里叶变换法数值求解含时薛定谔方程^[14].

2 结果与讨论

2.1 共振条件下泵浦场强对 AT 分裂的影响

图 2a 是不同泵浦场强 I_1 的光电子能谱图.光 电子能谱在 $I_1 \ge 2I_0(I_0=1.0\times10^{11} \text{ W/cm}^2)$ 时出现 对称双峰分裂, $I_1 \le 2I_0$ 时无分裂.这种对称双峰 结构已在三态 Na₂^[6-7], Li₂^[8]和 K₂分子^[9-10]中观察 到.这与四态原子体系中预期的双峰发射/吸收 (动力学分裂)相似^[15-17].光电子能谱的这种分裂 模式就是 AT 分裂.它可以用缀饰态理论的 ac-Stark 分裂来解释:这种双峰结构是由共振电离过 程中足够强的 Rabi 振荡引起的^[6-10].缀饰态理论 中,激发态 | B〉在外加激光场作用下分裂为两个 亚稳态 | α 〉和 | β 〉(即缀饰态),它们分别对应于 光电子能谱双峰结构中的低能峰和高能峰.这里 假定 | β 〉态的能量比 | α 〉态高.

Fig.2 Photoelectron spectra for various pump laser intensities

图 2a 中另一个重要特点是双分裂间距随泵浦场 强的增强而增大.这与在三态 K^[4], Rb^[1], K₂^[9-10] 和 Na₂^[6-7]中的研究结果相似.相似特征也出现在与三激 光场相互作用的四态原子/分子的吸收谱中^[11-12,15-17]. 图 2b 是峰的位置随泵浦场 Rabi 频率 R₁ 的变化图.双 峰关于 0.484 eV 对称,此对称中心由 $E_{t0} + \sum \hbar \omega_k - V_l(R_0)$ 得到^[7],其中, E_{t0} 是振动基态的能量, $\hbar \omega_k$ 是光 子能量, $V_l(R_0)$ 是 $|X^+\rangle$ 态在中性基态的平衡核间距 R_0 处的势能(如图 1 所示).两峰的中心位置如图 2b 中 的实线所示分别为 0.484 - $R_1/2$ 和 0.484 + $R_1/2$,这与 数值结果一致.图 2a 中随着泵浦场强的增大,更多的 峰出现.光电子能谱由多个成对的峰组成.场强越大能 峰越多,这在三态原子中观察到^[18].本文关注的是光 电子能谱中的两个主要的峰.

2.2 共振条件下探测场强对 AT 分裂的影响

图 3 是不同探测场强 *I*₂ 的光电子能谱图.光 电子能谱呈现对称性双分裂.泵浦场强只影响峰 高,这与三/四态系统中观察到的结果相似^[3,17].

2.3 泵浦波长对 AT 分裂的影响

图 4a 是探测波长保持不变,不同泵浦波长 λ_1 (590 nm~700 nm)的光电子能谱图.泵浦场失谐为 $\Delta_1 = \omega_1 - \omega_{BX}$,其中 ω_{BX} 是| $X \rightarrow B$)的固有频 率.从图4a中可以看出,当泵浦场失谐为零时,光 电子能谱呈现对称双分裂:当泵浦波长偏离共振 时,光电子能谱为不对称双分裂.不对称分裂由非 共振激发引起.此不对称性已经在三态 K 原子^[4]. K,分子^[9-10]和其他原子^[3,5]的双分裂中观察到.随 着泵浦波长的增大双峰向低能方向移动.这是因为 波长越长,光子能量越小,从而导致光电子能量越 低.此光电子能移与三态 K,^[9-10]分子的研究一致.但 他们没有量化峰移和双分裂间距.图 4b 是峰的位 置随泵浦失谐 Δ_1 的变化图.两峰位置如图 4b 中的 实线所示分别为 0.484 + (1/2) × Δ₁ -(1/2) × $\sqrt{\Delta_1^2 + R_1^2}$ 和 0.484 + (1/2) × Δ_1 + (1/2) × $\sqrt{\Delta_1^2 + R_1^2}$.AT 分裂间距为 $\sqrt{\Delta_1^2 + R_1^2}$.分裂间距大 小在以前对三态 K,的研究中未有报道,但在对其 他构型分子研究中有报道[1-3,19-20].图4中的一个重 要且有趣的特点是:当泵浦场偏离共振,双峰逐渐 变为单峰. 双峰向单峰转变的临界点为 Δ_1 = ±0.19 eV(也就是λ₁=580 nm 或者710 nm).双峰的 消失可以用缀饰态的非共振布居解释^[3,9-10].共振 条件下,K,分子处于缀饰态 | α 〉和 | β 〉上的概率 相同,从而观察到对称性双峰,当泵浦波长从 590 nm变化到 700 nm 时, K, 分子处于缀饰态 | α) π (*B*) 的概率不同,因此在泵浦激光场的近共振区 域可以观察到不对称性双峰.例如,当泵浦波长从 共振波长处逐渐增大时,由于波长越长意味着光子 能量越小,K,分子处于缀饰态 | α)的概率比 | β) 大.从而导致低能峰峰高大于高能峰峰高.当 $\lambda_1 \ge$ 710 nm/λ₁ ≤ 580 nm 时,低能峰/高能峰消失表明 缀饰态 $|\beta\rangle / |\alpha\rangle$ 的布居数为零.

激光场参数: $I_1 = I_2 = 4I_0$, $\lambda_2 = 460$ nm, $\tau = 30$ fs

图 4 不同泵浦波长的光电子能谱图

Fig.4 Photoelectron spectra for various pump laser wavelengths

2.4 共振条件下探测波长对 AT 分裂的影响

图 5a 是泵浦波长共振,不同探测波长 λ_2 (400 nm~520 nm)的光电子能谱图.探测场的失 谐 $\Delta_2 = \omega_2 - \omega_{460}$.探测波长仅仅影响峰的位置.但 是 Liu 等认为探测波长影响三态 Li₂双峰的间距 和峰高^[8].图 5b 是峰的位置随探测失谐 Δ_2 的变化图.两峰的位置如图 5b 中的实线所示分别为 0.391+0.997 Δ_2 和 0.578+0.997 Δ_2 .这表明两峰都 位移了 Δ_2 .AT 分裂间距(0.198 eV)不随探测波 长的变化而变化.

图 5 不同探测波长的光电子能谱图

综合以上激光场强和波长对 AT 分裂影响的 讨论.光电子能谱中双峰位置分别为 0.484 + (1/2)× Δ_1 + Δ_2 - (1/2)× $\sqrt{\Delta_1^2 + R_1^2}$ 和 0.484 + (1/2)× Δ_1 + Δ_2 +(1/2)× $\sqrt{\Delta_1^2 + R_1^2}$,它们分别 对应两个亚稳态 + α 〉和 + β 〉.分裂间距 为 $\sqrt{\Delta_1^2 + R_1^2}$.

3 结 论

本文利用含时波包法研究了强飞秒泵浦—探 测激光场中场强和波长对三态阶跃型 K₂分子光 电子能谱 AT 分裂的影响.分别研究了共振激光 场,近共振激光场和远共振激光场三种情况下 AT 分裂的特点.

在泵浦共振区域,探测场强保持不变,光电子 能谱呈现对称双分裂(峰高和间距),并且 AT 分 裂间距随着泵浦场强的增大而增强.双峰分裂近 似与 *R*₁/2 成正比.探测场强仅影响峰高.

在泵浦非共振区域,泵浦和探测场强均保持 不变,光电子能谱呈现不对称双分裂,双峰之间的 分裂(峰高),AT 分裂间距($\sqrt{\Delta_1^2 + R_1^2}$)随着泵浦 波长的变化而变化.随着泵浦波长的增大,双峰以 不同位移量向低能方向移动. 当泵浦波长偏离共振波长时, 近共振区域(即 580 nm $\leq \lambda_1 \leq$ 710 nm), 双峰结构逐渐变为单峰. 这可以用缀饰态的非对称布居来解释. $\Delta_1 = \pm 0.19 \text{ eV}$ (即 $\lambda_1 = 580 \text{ nm or 710 nm}$ 是近共振区域和远共振区域的分界点.

探测波长仅仅影响峰的位置.两峰均以相同的位移量 Δ_2 向低能方向移动.双峰间距(0.198 eV)不随探测波长的变化而变化.

参考文献:

- Du Z J,Zhang S G, Wu C J, et al. Observation of Autler-Townes effect in electromagnetically induced transparency
 [J].Chin.Phys.Lett., 2010, 27(10):104202.
- [2] Wilson E A, Manson N B, Wei C, et al. Perturbing an electromagnetically induced transparency in a Λ system using a low-frequency driving field. I. Three-level system [J]. Phys. Rev. A, 2005, 72(6):063813.
- [3] Peng Y G, Zheng Y J.Coherent optical spectroscopy of a single quantum dot using photon counting statistics [J]. Phys.Rev.A, 2009, 80(4):043831.
- [4] Wollenhaupt M, Liese D, Präkelt A, et al. Quantum control by ultrafast dressed states tailoring [J]. Chem. Phys.Lett., 2006,419(1):184-190.

- [5] Chang R Y, Fang W C, He Z S, et al. Doubly dressed states in a ladder-type system with electromagnetically induced transparency [J]. Phys. Rev. A, 2007, 76 (5):053420.
- [6] Sun Z G, Lou N Q. Autler-Townes splitting in the multiphoton resonance ionization spectrum of molecules produced by ultrashort laser pulses [J]. Phys. Rev. Lett., 2003,91(2):023002.
- [7] Yuan K J, Sun Z G, Cong S L, et al. Molecular photoelectron spectrum in ultrashort laser fields: Autler-Townes splitting under rotational and aligned effects [J]. Phys. Rev.A, 2006, 74:043421.
- [8] Liu Y F, Liu R Q, Ding J X. Theoretical investigation of femtosecond-resolved photoelectron spectra of the Li₂ molecule[J]. Chin. Phys. Lett., 2009, 26(7):073301.
- Yao H B, Zheng Y J. Autler-Townes splitting in photoelectron spectra of K₂ molecule[J].Chin.Phys.B, 2012, 21
 (2):023302.
- [10] Yao H B,Li W L,Zhang J,et al.Quantum control of K₂ molecule in an intense laser field: selective population of dressed states [J]. Acta Phys. Sin., 2014, 63 (17):178201.
- [11] Yao H B, Zheng Y J. Quantum control of a molecular system in an intense field via the selective population of dressed states [J]. Phys. Chem. Chem. Phys., 2011, 13 (19):8900-8907.
- [12] Qin C C, Zhai H S, Zhang X Z, et al. Coherent control of Autler-Townes splitting in photoelectron spectroscopy: The effect of laser intensity and laser envelope[J].Bull.

Korean.Chem.Soc., 2014, 35(11): 3294-3298.

- [13] Jraij A, Allouche A R, Magnier S, et al. Theoretical investigation of $\Omega_{g,u+/.}$ states of dissociating adiabatically up to $K(4p^2P_{3/2}) + K(4p^2P_{3/2})$ [J]. J. Chem. Phys., 2009, 130(24) ;244307.
- [14] Hu J, Han K L, He G Z.Correlation quantum dynamics between an electron and D₂₊ molecule with attosecond resolution[J].Phys.Rev.Lett., 2005,95(12):123001.
- [15] Dutta B K, Mahapatra P K. Control of the spontaneous emission spectrum in a driven N-type atom by dynamically induced quantum interference [J]. Phys. Scr., 2009,79(6):065402.
- [16] Sandhya S N.The effect of atomic coherence on absorption in four-level atomic systems: an analytical study [J].J.Phys.B,2007,40(5):837-849.
- [17] Wang D, Zheng Y. Quantum interference in a four-level system of a ⁸⁷Rb atom: Effects of spontaneously generated coherence [J]. Phys. Rev. A, 2011, 83 (1):013810.
- [18] Cardimona D A, Alsing P M, Mozer H, et al. Interference effects in a three-level atom in a cavity beyond the weak-field approximation [J]. Phys. Rev. A, 2009, 79 (6):063817.
- [19] Khan U K, Sebastian J, Kamaraju N, et al. Observation of narrow fluorescence from doubly driven four-level atoms at room temperature [J]. EPL, 2004, 67(1):35-42.
- [20] Narayanan A, Srinivasan R, Khan U K, et al. Fluorescence from doubly driven four-level atoms [J]. Eur.Phys.J.D,2004,31(1):107-112.