文章编号:1673-0062(2014)04-0005-06

时间间隔分析法和延迟符合法测量低浓度²²⁰ Rn 的对比实验研究

祁铁涛,齐宇虹,颜拥军*,杨朝桐,付德顺

(南华大学 核科学技术学院,湖南 衡阳 421001)

摘 要:讨论多时间间隔分析方法(又称 TIA 方法)和延迟符合法同时测量 10 Bq 的²²⁰Rn 标准源,两者为相同实验平台,采用卢卡斯氡探测器(FD-125)对²²⁰Rn 标准源 进行流气式测量,改变软件实现两种不同数据处理方法.实验结果表明,多时间间隔 分析法在测量低浓度²²⁰Rn 时更加准确. 关键词:时间间隔分析方法;²²⁰Rn 的测量;延迟符合法 中图分类号:TL822 文献标识码:B

The Contrast Experimental Study on Measurement of Radon Isotopes ²²⁰Rn by Time Interval Analysis Method and Delay Coincidence Method

QI Tie-tao, QI Yu-hong, YAN Yong-jun^{*}, YANG Chao-tong, FU De-shun

(School of Nuclear Science and Technology, University of South China, Hengyang, Hunan 421001, China)

Abstract:This article focuses on the time interval analysis(TIA method) method and delay coincidence method at the same time measuring 10 Bq of ²²⁰Rn standard source, both for the same experimental platform and conditions. Lucas detector(FD-125) was applied to flow-through measure the standard ²²⁰R, two different data processing methods were established by changing the software. It can be seen, the time interval analysis is more accurate than delay coincidence for measuring the low ²²⁰Rn.

key words: time interval analysis method; 220 Rn measurement; delay coincidence method

时间间隔分析法和延迟符合法在铀矿冶、后 处理厂和快堆等核设施周围放射性测量中有广阔 的应用前景,都可以测量低浓度氡同位素^[1-9],本 实验是利用卢卡斯氡闪烁体探测器构建实验装

收稿日期:2014-06-03

基金项目:湖南省大学生研究性学习和创新实验计划基金资助项目(13187);湖南省高校产业化培育基金资助项目 (13CY014)

作者简介:祁铁涛(1987-),男,甘肃静宁人,南华大学核科学技术学院硕士研究生.主要研究方向:核技术应用. * 通讯作者.

置,对 10 Bq 的²²⁰ Rn 标准源进行流气式测量,通 过 ARM9 实验箱记录 α 粒子的到达时刻,把这些 α 粒子的到达时刻通过串口传送到电脑上,形成 一个时间数据序列,然后分别用多时间间隔分析 方法和延迟符合法对这些时刻进行分析、处理,最 后算出²²⁰ Rn 源的活度,对两者进行实验比较研 究,为之后的应用研究提供参考.

时间间隔分析方法和延迟符合法 原理

1.1 多时间间隔分析方法原理

多时间间隔分析法^[13]是将所有脉冲到达时 刻之间的相互差值作比较,当两个脉冲到达时刻 的差值小于3s(20倍²¹⁶Po的半衰期)时,就计为 一个符合计数,当两个脉冲到达时刻的差值大于 3s时,就计为偶然符合,不再对其进行分析.然后 重复上述操作,建立一个时间间隔谱.公式如下:

多时间间隔谱可以由时间间隔分布乘以总计数 M 得:

 $MP(t) dt = [aexp(-\lambda t) + C] dt \qquad (1)$

a 为与母体活度成正比的活度参数, C 为事 件发生率或者是放射性核素的计数率,λ 为相关 事件(子体)的衰变常数.多时间谱由两部分组 成,指数部分和常数部分,指数部分由放射性物质 计数率决定,常数部分由随机事件计数率决定.得 到多时间分布曲线后,调用 cftool 函数拟合出 a 的值,最终,光电倍增管探测到的脉冲经过多时间 分析处理得到²²⁰ Rn 的活度计算公式为:

$$A(^{220}\text{Rn}) = a/(\lambda \cdot T)$$
 (2)

其中T为测量时间, λ为子体衰变常数.

$$A = \frac{A(^{220}\text{Rn})}{f_s \times f_D \times \varepsilon \times 60}$$
(3)

 $A(^{220} Rn)$ 为光电倍增管探测到的脉冲经过多时间分析处理得到的 $^{220} Rn$ 活度, ε 为闪烁室的探测效率.

1.2 延迟符合法原理

图 1 为延迟符合处理单元的框图.具体参数 见文献[4-6].

偶然符合修正[7]如下:

对于²²⁰ Rn 符合通道,由于²¹⁵ Po 的半衰期很短 只有 1.78 ms,²¹⁹ Rn - ²¹⁵ Po 产生的两个脉冲的时 间间隔很短,²¹⁹ Rn 产生的脉冲触发了门电路, ²¹⁵ Po产生的脉冲将几乎完全发生²²⁰ Rn 道 10 ms 的延迟时间里,²¹⁵ Po 产生的脉冲对于²²⁰ Rn 符合通 道而言不是随机脉冲,没有起到再次触发开门的 作用.

图1 延迟符合处理单元框图

Fig.1 Unit block diagram of delayed coincidence processing

另一方面,由于²²⁰ Rn 符合通道触发后有个 10 ms的延迟时间,除了²¹⁵ Po 外,每次开门时间中 还有小部分随机脉冲将发生在延迟时间里而不对 符合通道产生任何作用,这部分的比例是0.01 即 10 ms 占1 s 的比例.所以触发开门脉冲计数率:

 $x - y = (n_1 - n_{c220} - n_{co219}) \times 0.99$ (4) 其中, x 为随机脉冲计数率,其等于总脉冲计数率 减去真符合计数率, y 为偶然符合计数率, T_g 为开 门时间, n_1 为总计数, n_{c220} 为 220 符合通道符合计 数率, n_{co219} 为修正的 219 符合通道计数率, n_{rc220} 为 偶然符合计数率. 代入偶然符合计数率公式得:

$$n_{\rm rc220} = \frac{\left(n_{\rm t} - n_{\rm c220} - n_{\rm co219}\right)^2 \times 0.99 \times T_{\rm g}}{1 - \left(n_{\rm t} - n_{\rm c220} - n_{\rm co219}\right) \times 0.99 \times T_{\rm g}}$$
(5)

扣除偶然符合:

$$n_{\rm co220} = n_{\rm c220} - n_{\rm rc220} \tag{6}$$

 n_{co220} 为修正的 220 符合通道计数率,然而如 果在²²⁰ Rn 符合通道的开门时间里发生一次²¹⁹ Rn - ²¹⁵ Po 衰变,就会被记录成两个偶然符合,而在 前面的公式里只当成是一个偶然符合,需加以扣 除. 一个随机单脉冲被记录为偶然符合计数的概 率是: $\frac{Y}{x} = (x - y) \times 0.99 \times T_g$,即被记录为偶然 符合的随机单脉冲占总的随机单脉冲的比例. 所 以²²⁰ Rn 符合通道的开门时间里发生²¹⁹ Rn - ²¹⁵ Po 衰变的概率是: $n_{co219} \times (n_1 - n_{c220} - n_{co219}) \times$ 0.99 × T_g ,则²²⁰ Rn 符合通道的最终符合计数率 (净计数率)表达式为:

$$n_{\text{fco20}} = n_{\text{co210}} - n_{\text{co219}} \times (n_{\text{t}} - n_{\text{co219}} - n_{\text{co219}}) \times 0.99 \times T_{\text{g}}$$
(7)

n_{fco20} 表示最终符合计数率. 源活度计算公

式为:

$$A = \frac{n_{\rm fco220}}{E_{220} \times f_{\rm S} \times f_{\rm D}}$$
(8)

其中 E_{220} 为符合通道率,其值为 $0.662, f_s$ 为存活因子, f_D 为衰变因子.

2 测量方法

如图 2 为多时间间隔分析方法和延迟符合测

量²²⁰Rn 的实验平台^[8].

²²⁰ Rn 源到达闪烁室之前要经过缓冲容积,有 一部分源在缓冲容积内发生了衰变,只有存活下 来的才能到达闪烁室,流经闪烁室的氡²²⁰ Rn 有一 部份在闪烁室发生衰变,只有发生衰变才能被探 测到.要计算源的初始活度,就要知道这两部份所 占的份额即存活因子 f_s 和衰变因子 f_D,具体参见 文献[9].

图 2 多时间分析方法测量²²⁰ Rn 的实验平台

Fig. 2 Experiment platform of multi_time analysis method to measure ²²⁰ Rn

$$A = \frac{A(^{220}Rn)}{f_{\rm s} \times f_{\rm D} \times \varepsilon \times 60}$$
(9)

 $A(^{220}Rn)$ 为光电倍增管探测到的脉冲经过多时间分析处理得到的 ^{220}Rn 活度, ε 为闪烁室的探测效率.

3 实验研究

测量²²⁰Rn 源时,分为三组进行实验.第一组,

缓冲体积设置为4L,流率0.32L/min;第二组,缓 冲体积设置为4L,流率0.5L/min;第三组,缓冲 体积设置为4L,流率0.7L/min.记录定标器的计 数值和ARM9的总计数值及这些计数值的时间信 息,根据多时间分析方法和延迟符合法,分别算出 这三组²²⁰Rn的衰变率.如表1是三组实验各自的 衰变修正因子.

表 I 某受修止因于						
Table1	Decay correction fac	tor				

流率	层流流态(理论)		5 	实际测量		湍流流态(理论)	
$/(L \cdot min^{-1})$	存活因子	衰变因子	存活因子	- 衰变因子	存活因子	衰变因子	
0.32	7.8e - 005	0.700 30	0.008 28	0.564 80	0.090 30	0.562 40	
0.50	0.002 40	0.537 50	0.021 90	0.442 00	0.141 90	0.435 40	
0.70	0.013 30	0.423 50	0.070 15	0.367 82	0.188 00	0.355 20	

1)流率0.32 L/min,多时间分析法测量10 h, 延迟符合法测量时间3 h,下同.流率为0.32 L/min 时闪烁室的本底(测量时间为 10 min)为 4.86 /min.表2 为测量的三组数据,测量时间10 h. 根据记录的脉冲时间信息数据,以 matlab 软件工具,用多时间分析方法对这些时间信息进行处理,每组数据得到如图 3 这样的一个时间分析图.

次 数	定标器计数率(cpm)	ARM9 总计数率(cpm)	多时间测量值(cpm)	延迟符合测量值(cpm)
1	10.197	10.520	2.351	0.035
2	11.085	10.930	2.441	0.039
3	10.588	10.737	2.385	0.024
均值	10.623	10.729	2.392	0.033
标准偏差	0.257	0.118	0.026	0.0045

表 2 流率 0.320 L/min 时,测量时间 10 h(600 min)的计数 Table 2 Counts when flow rate is 0.320 L/min, and measuring time is 10 h(600 min)

图 3 多时间分析图,第1、2、3 组数据(从左到右) Fig. 3 Multi_time analysis diagram,1,2,3 sets of data (from left to right)

图 3 为表 2 的三组数据得到的多时间分析图, 调用 cftool 函数,用公式 f(x) = a * (exp (-0.004779*x)) + c 对时间分析图进行拟合,如 图 3 中的拟合曲线,其中 a 为与标准源活度成正比 的参数,x 为时间参数,c 为与本底相关的常数,由此 拟合公式得到公式 2 中的 a 值.再根据公式 9,即可 算出²²⁰Rn标准源的活度.如图3,指数部分为²²⁰Rn的衰变曲线,常数部分为本底或随机事件的计数.

2)流率0.5 L/min,多时间分析法测量10 h, 延迟符合法测量时间3 h.流率为0.5 L/min 时闪 烁室的本底(测量时间为10 min)为4.6 /min.表 3 为测量的三组数据.

表 3 流率为 0.50 L/min,测量时间 10 h(600 min)的计数 Table 3 Counts when flow rate is 0.50 L/min, and measuring time is 10 h(600 min)

次数	定标器计数率(cpm)	ARM9 总计数率(cpm)	多时间测量值(cpm)	延迟符合测量值(cpm)
1	19.333	19.592	5.025	0.080
2	19.182	19.868	4.959	0.055
3	19.985	20.230	5.304	0.075
均值	19.500	19.876	5.096	0.070
标准偏差	0.246	0.185	0.106	0.0076

图 4 为根据表 3 的三组数据得到的多时间分

析图,方法同上.

图 4 多时间分析²²⁰ Rn 第 1、2、3(从左到右)组数据图 Fig. 4 Multi_time analysis diagram, 1, 2, 3 sets of data (from left to right)

3) 流率 0.7 L/min, 多时间分析法测量 10 h, 延迟符合法测量时间3h. 流率为0.7 L/min 时闪

烁室的本底(测量时间为 10 min)为 4.76 /min. 表4 为测量的三组数据.

表 4 流率为 0.70 L/min, 测量时间 10 h (600 min) 的计数						
Table 4 Counts when flow rate is 0.70 L/min, and measuring time is 10 h(600 min)						
次数	定标器计数率(cpm)	ARM9 总计数率(cpm)	多时间测量值(cpm)	延迟符合测量值(cpm)		
1	39.662	40.283	14.110	0.195		
2	41.917	42.303	13.563	0.204		
3	42.775	43.028	14.253	0.177		
均值	41.451	41.871	13.975	0.192		
标准偏差	0.928	0.821	0.210	0.0079		

图 5 为根据表 4 的三组数据得到的多时间分

析图,方法同上.

多时间分析²²⁰Rn 第1、2、3(从左到右)组数据图 图 5 Fig. 5 Multi_time analysis diagram, 1, 2, 3 sets of data (from left to right)

对图 3、图 4、图 5 的数据处理,得到²²⁰ Rn 源 10 Bq 测量数据如表 5.

多时间间隔分析法和延迟符合法处理实验结果对比 表 5

Table 5 The experimental results comparison of Multi – time interval analysis method and delay coincidence method

流率 ∕(L・min ⁻¹)	理论值 (活度)/Bq	多时间分析法 测量值/Bq	相对偏差/%	延迟符合法 测量值/Bq	相对偏差/%
0.32		10.108 ± 0.108	1.08	10.651 ± 0.0045	6.51
0.50	10	10.619 ± 0.212	6.19	10.924 ± 0.0076	9.24
0.70		10.797 ± 0.210	7.97	11.241 ± 0.0079	12.41

由表5可知在流率为0.32 L/min时,其相对 偏差分别为 1.08%、6.51%; 流率为 0.5 L/min 时,其相对偏差分别为6.19%、9.24%:流率为 0.7 L/min 时,其相对偏差分别为7.79%、 12.41%.

结 论 4

上述研究表明,多时间间隔分析方法(又称 TIA 方法)和延迟符合法都能实现低浓度²²⁰Rn的

测量,多时间间隔分析方法的测量结果的相对偏 差比延迟符合法的要小,说明多时间间隔分析方 法在测量低浓度²²⁰Rn 时比延迟符合法要准确. 延 迟符合法需要对测量结果进行繁琐的偶然符合修 正,多时间分析法相对简单,但测量时间相对较长 (10 h),其探测范围为1~0.01 Bq,在测量过程 中,要保持流率、甄别阈值稳定,还要尽可能减少 电子学噪声.

图 7 密封面清洗后表面质量 Fig. 7 Surface quality of cleaned sealing surface

5 结 论

清洗机清洗效果和试验运行结果表明,清洗 机系统自动化程度高,稳定可靠,完全能够满足反 应堆压力容器密封面的清洗要求.一键操作避免 了维修人员清洗时受到较大辐射剂量的侵害,大 幅度提高清洗工作效率和清洗质量,清洗机具备 远距离视频观察小车运动情况和密封面情况功 能,既可以作为清洗机也可以作为密封面表面质 量检查设备使用,同时具备了远距离、多地点监控 功能,使用方便.通过对清洗机进行的试验和工程 应用,证明清洗机设计是正确合适的,各项指标均 达到设计要求.

参考文献:

- [1] 梁治齐. 实用清洗技术手册[M]. 2 版. 北京:化学工 业出版社,2005.
- [2] 李异.金属表面清洗技术[M].北京:化学工业出版 社,2007.
- [3] 王妹婷,齐永锋,蒋伟,等.轮腿式壁面清洗机器人控 制系统研究[J].现代制造工程,2013(11):20-24.
- [4] 郑相周, 唐国元. 机械系统虚拟样机技术[M]. 北京: 高等教育出版社, 2010.
- [5] 张旭,毛恩荣. 机械系统虚拟样机技术的研究与开发 [J]. 中国农业大学学报,1999,4(2):94-98.
- [6] 张毅,刘琳娟,杨静,等. 虚拟数字样机开发(VPD)支 持技术的研究[J]. 现代制造工程,2002(10):25-26.
- [7] 夏汉民, 王耀南, 印峰, 等. 大型冷凝器清洗机器人设 计及运动学分析[J]. 中国机械工程, 25(1):103-107.
- [8] 王勖成. 有限单元法[M]. 北京:清华大学出版 社,2003.
- [9] 赵光宙.现代控制理论[M].北京:机械工业出版 社,2010.
- [10] 孙家广. 计算机图形学[M]. 北京:清华大学出版 社,1998.

参考文献:

- [1] Hashimoto T, Ishizuka F, Yoneyama Y, et al. Determination of natural radionuclides to millisecond order lives in envieonmental samples using the time interval analysis (TIA) method [J]. Journal of Radioanatytical and Nuclear Chemistry, 1995, 197(1):99-114.
- Hashimoto T, Noguchi M, Washio H, et al. Priciple of single and multiple time interval analysis applicable to radioactive nuclides with half-lives of millisecond order
 J. Journal of Radioamdytical and Nuclear Chemistry, 1992,59(2):375-387.
- [3] Hashimoto T, Kmatus Y, Hong D G, et al. Determination of raionuclides in small pieces of archaeological sample and its application to TL-daying [J]. Radiation Mesurements, 2001, 33(1):95-101.
- [4] Moore W S, Arnold R. Measurement of ²²³Ra and ²²⁴Ra in coastal waters using a delayed coincidence counter

[J]. Journal of Geophysical Research, 1996, 101 (C1): 1321-1329.

- [5]颜拥军,邓阳源,赖伟,等.软件延迟符合法测量低活 度²²⁰Rn的实验研究[J].辐射防护,2012,32(4): 254-258.
- [6] Moore W S. Fifteen years experience in measuring ²²⁴Ra and ²²³Ra by delayed-coincidence Counting[J]. Marine Chemistry, 2008, 109(3):188-1197.
- [7]颜拥军,黄德荣,周剑良,等.延迟符合法测²²³ Ra 和
 ²²⁴ Ra的偶然符合修正计算比较研究[J].原子能科学 技术,2013,47(8):1450-1457.
- [8]颜拥军,周剑良,杨彬,等.基于 ARM 的软件延迟符合 法氡同位素分辨测量实验系统研制[J].原子能科学 技术,2011,45(12):1527-1531.
- [9] 黄德荣,颜拥军,周剑良,等.²²⁰Rn 延迟符合测量中偶 然符合及存活因子和衰变因子的确定[J]. 辐射防 护,2013,33(6):362-420.

⁽上接第9页)