文章编号:1673-0062(2013)04-0019-04

一种同时测量222 Rn、220 Rn 的单闪烁室两段法

周青芝,肖德涛*,赵桂芝,肖拥军,单 健

(南华大学 核科学技术学院,湖南 衡阳 421001)

摘 要:本文介绍了一种同时测量混合²²² Rn、²²⁰ Rn 空气的单闪烁室方法,该方法利用 一个闪烁室测量采样结束后两个不同时间段的计数,再联立一个二元方程组来求 解²²² Rn、²²⁰ Rn 浓度,因此也叫单闪烁室两段法,该方法无需任何延时即可快速准确测 定混合环境下²²² Rn、²²⁰ Rn 浓度. 关键词:²²² Rn;²²⁰ Rn;闪烁室;两段法 中图分类号:TL75⁺1 文献标识码:B

Simultaneous Measurement of Radon and Thoron Using a Scintillation Cell

ZHOU Qing-zhi, XIAO De-tao*, ZHAO Gui-zhi, XIAO Yong-jun, SHAN Jian

(School of Nuclear Science and Technology, University of South China, Hengyang, Hunan 421001, China)

Abstract: A method has been developed for the simultaneous measurement of radon (²²²Rn) and thoron(²²⁰Rn) in a mixed environment using a scintillation cell in this paper. The method uses counts from two arbitrary counting intervals from zero time with respect to sampling, establishes two equations with two unknown variables to solve concentrations of radon and thoron, hence, called two-count method(TCM). The method can be used to estimate the radon and thoron concentrations in a mixed environment accurately and quickly, as there is no need to delay the counting to achieve complete decay of thoron. **key words**:radon;thoron;scintillation cell;two-count method

0 引

²²²Rn、²²⁰Rn 是天然存在的放射性惰性气体,

对其准确测量是环境监测、辐射防护、找矿、地震 预报、地质调查、工程质量监测等相关领域十分关 注的问题^[14].

言

收稿日期:2013-06-25

基金项目:国家青年基金资助项目(11005060);教育部博士点基金资助项目(20114324110003)

作者简介:周青芝(1981-),男,湖南邵东人,南华大学核科学技术学院讲师,博士研究生.主要研究方向:气载放射 性监测与评价方法研究.*通讯作者.

目前,测量222 Rn 的方法有多种,但测量220 Rn 的方法较少,尤其是222 Rn、220 Rn 同时存在时.基于 不同测量原理,测量222 Rn、220 Rn 的方法可分为静 电收集法、闪烁室法、双滤膜法、活性炭 v 能谱法 等,其中闪烁室法是最简单和成熟的方法之 一^[5]. 南华大学氡实验室为实现对²²⁰ Rn 室中 ²²²Rn、²²⁰Rn 的准确计量先后研究了双闪烁室流气 延时法和单闪烁室静态延时法,这两种方法均利 用²²⁰Rn 的半衰期短而²²²Rn 半衰期较长的特点实 现对²²²Rn、²²⁰Rn 的甄别. 其中双闪烁室流气延时 法利用一个闪烁室测量222 Rn、220 Rn 混合信息,而 另一个闪烁室通过较长管道延时来让²²⁰ Rn 衰变 掉,从而实现对222 Rn、220 Rn 的测量;单闪烁室静态 法通过对同一样品的两个不同时间段测量,前一 段测量²²²Rn、²²⁰Rn 混合信息,让同一样品空气密 闭于闪烁室内并静置一段时间,待²²⁰Rn 基本衰变 掉后再进行第二段测量,从而实现对²²²Rn、²²⁰Rn 的甄别. 这两种方法均采用实验方法确定转换系 数(探测信号与²²² Rn、²²⁰ Rn 活度浓度的转换系 数),双闪烁室流气延时法的管线较复杂,同时需 两套探测系统且对气体流率稳定性有较高的要 求,而单闪烁室静态延时法第二段计数还未能消 除220 Rn 子体的影响.

1 闪烁法测量氡

闪烁室是内表面涂有硫化锌(银)闪烁体且 有一面透光窗的密闭容器,其已被广泛应用于 ²²² Rn、²²⁰ Rn 测量.闪烁室的结构示意图如图 1 所示.

图1 闪烁室示意图

含氡空气经滤膜过滤后,将其密闭于闪烁室 内,期间氡及其子体衰变放出α粒子,α粒子与室 壁上的硫化锌(银)闪烁体相互作用而产生光子, 产生的光子被光电倍增管探测系统记录,由于探 测到的光子数与闪烁室内氡浓度、探测效率及测 量时间等因素相关,因此可通过探测系统效率因 子换算计算得到采样环境空气中氡浓度值^[6-7].

2 单闪烁室两段法

2.1 计算公式理论推导

如图 2 为单闪烁室两段法测量示意图.

图 2 单闪烁室两段法测量示意图 Fig. 2 Schematic diagram of measurement by two-count method using a scintillation cell

开启抽气泵使含²²² Rn、²²⁰ Rn 空气以 v(L/min)流速经高效子体过滤器后进入闪烁室中,当闪烁室 内气体浓度与²²⁰ Rn 室中气体浓度平衡时关闭抽气 泵,完成采样;采样结束后,立即开启单闪烁室探测 系统,记录 $0 - t_1$ 和 $0 - t_2$ 两个时间段的信号计数 N_1 和 N_2 . N_1 、 N_2 经探测效率修正可得到 α 总活度, 其大小取决于探测效率、²²² Rn 及其两个 α 放射性 子体(²¹⁸ Po 和²¹⁴ Po) 和²²⁰ Rn 及其三个 α 放射性子 体(²¹⁶ Po,²¹² Bi 和²¹² Po)的活度.考虑到上述因素,联 立式(1)、式(2) 两个方程,即可求解采样空气 ²²² Rn、²²⁰ Rn 活度浓度^[5].

$$N_1 = \eta(\alpha_{Rn1}x + \alpha_{Tn1}y) \tag{1}$$

$$N_2 = \eta(\alpha_{Rn2}x + \alpha_{Tn2}y) \tag{2}$$

其中 x_y 分别是闪烁室内²²² Rn、²²⁰ Rn 的活度 (Bq), η 为探测效率, α_{Rn1} 、 α_{Tn1} 分别是单位活度 的²²² Rn、²²⁰ Rn 在 0 – t_1 时间段内的²²² Rn、²²⁰ Rn 及 其 α 衰变子体的总活度, α_{Rn2} 、 α_{Tn2} 分别是单位活 度的²²² Rn、²²⁰ Rn 在 0 – t_2 时间段内的²²² Rn、²²⁰ Rn 及其 α 衰变子体的总活度.

$$\alpha_{Rn1} = \int_{0}^{t_{1}} A_{R1}(t) dt + \int_{0}^{t_{1}} A_{R2}(t) dt + \int_{0}^{t_{1}} A_{R5}(t) dt$$
(3)

²²²Rn 及其 α 衰变子体在 $0 - t_1$ 时间段内的总 活度 α_{Rn1} 如式(3)所示,其中 A_{R1} 、 A_{R2} 和 A_{R5} 分别是 单位活度²²²Rn 情况下²²²Rn、²¹⁸Po 和²¹⁴Po 的活度. 同样, α_{Rn2} 可以表示如式(4).

$$\alpha_{Rn2} = \int_{0}^{t_{2}} A_{R1}(t) dt + \int_{0}^{t_{2}} A_{R2}(t) dt + \int_{0}^{t_{2}} A_{R5}(t) dt$$
(4)

$$A_{R1}(t) = e^{-\lambda_1 t} \tag{5}$$

$$A_{R2}(t) = \lambda_2 \left(\frac{e^{-\lambda_1 t}}{\lambda_2 - \lambda_1} + \frac{e^{-\lambda_2 t}}{\lambda_1 - \lambda_2} \right)$$
(6)

$$A_{R5}(t) = \lambda_2 \lambda_3 \lambda_4 \lambda_5 \left(\frac{e^{-\lambda_1 t}}{\alpha_1} + \frac{e^{-\lambda_2 t}}{\alpha_2} + \frac{e^{-\lambda_3 t}}{\alpha_3} + \frac{e^{-\lambda_4 t}}{\alpha_4} + \frac{e^{-\lambda_5 t}}{\alpha_5} \right)$$
(7)

其中,

 $\begin{aligned} \alpha_1 &= (\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_1)(\lambda_5 - \lambda_1), \\ \alpha_2 &= (\lambda_1 - \lambda_2)(\lambda_3 - \lambda_2)(\lambda_4 - \lambda_2)(\lambda_5 - \lambda_2), \\ \alpha_3 &= (\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)(\lambda_4 - \lambda_3)(\lambda_5 - \lambda_3), \\ \alpha_4 &= (\lambda_1 - \lambda_4)(\lambda_2 - \lambda_4)(\lambda_3 - \lambda_4)(\lambda_5 - \lambda_4), \\ \alpha_5 &= (\lambda_1 - \lambda_5)(\lambda_2 - \lambda_5)(\lambda_3 - \lambda_5)(\lambda_4 - \lambda_5). \end{aligned}$

在上述表达式中, λ 代表²²² Rn 及其衰变子体的衰变常数,其中 λ_1 是²²² Rn 的衰变常数.

 α_{TN1} 、 α_{TN2} 分别是单位活度²²⁰ Rn 情况下²²⁰ Rn 及其 α 衰变子体在 0 – t_1 、0 – t_2 时间段内的总 活度.

$$\alpha_{TN1} = \int_{0}^{t_{1}} A_{T1}(t) dt + \int_{0}^{t_{1}} A_{T2}(t) dt +
\begin{bmatrix} 0.36 \int_{0}^{t_{1}} A_{T4}(t) dt + 0.64 \int_{0}^{t_{1}} A_{T5\alpha}(t) dt \end{bmatrix} (8)$$

$$\alpha_{TN2} = \int_{0}^{t_{2}} A_{T1}(t) dt + \int_{0}^{t_{2}} A_{T2}(t) dt +
\begin{bmatrix} 0.36 \int_{0}^{t_{2}} A_{T4}(t) dt + 0.64 \int_{0}^{t_{2}} A_{T5\alpha}(t) dt \end{bmatrix} (9)$$

其中 A₇₁、A₇₂、A₇₄和 A_{75α}分别是单位活度²²⁰Rn 情况下²²⁰Rn、²¹⁶Po、²¹²Bi 和²¹²Po 的活度.

$$A_{TI}(t) = e^{-\lambda_1 t} \tag{10}$$

$$A_{T2}(t) = \lambda_2 \left(\frac{e^{-\lambda_1 t}}{\lambda_2 - \lambda_1} + \frac{e^{-\lambda_2 t}}{\lambda_1 - \lambda_2} \right)$$
(11)

$$A_{T4}(t) = \lambda_2 \lambda_3 \lambda_4 \left(\frac{e^{-\lambda_1 t}}{\beta_1} + \frac{e^{-\lambda_2 t}}{\beta_2} + \frac{e^{-\lambda_3 t}}{\beta_3} + \frac{e^{-\lambda_4 t}}{\beta_4} \right)$$
(12)

$$A_{T5\alpha}(t) = \lambda_2 \lambda_3 \lambda_4 \lambda_5 \left(\frac{e^{-\lambda_1 t}}{\beta_1} + \frac{e^{-\lambda_2 t}}{\beta_2} + \frac{e^{-\lambda_3 t}}{\beta_3} + \frac{e^{-\lambda_4 t}}{\beta_4} + \frac{e^{-\lambda_5 a^t}}{\beta_5} \right)$$
(13)

其中,

$$\begin{split} \boldsymbol{\beta}_{1} &= (\lambda_{2} - \lambda_{1})(\lambda_{3} - \lambda_{1})(\lambda_{4} - \lambda_{1}), \\ \boldsymbol{\beta}_{2} &= (\lambda_{1} - \lambda_{2})(\lambda_{3} - \lambda_{2})(\lambda_{4} - \lambda_{2}), \\ \boldsymbol{\beta}_{3} &= (\lambda_{1} - \lambda_{3})(\lambda_{2} - \lambda_{3})(\lambda_{4} - \lambda_{3}), \\ \boldsymbol{\beta}_{4} &= (\lambda_{1} - \lambda_{4})(\lambda_{2} - \lambda_{4})(\lambda_{3} - \lambda_{4}), \\ \boldsymbol{\alpha}_{5\alpha} &= (\lambda_{1} - \lambda_{5\alpha})(\lambda_{2} - \lambda_{5\alpha})(\lambda_{3} - \lambda_{5\alpha})(\lambda_{4} - \lambda_{5\alpha}). \end{split}$$

在上述表达式中, λ 代表²²⁰Rn 及其衰变子体的衰变常数,其中 λ_1 是²²⁰Rn 的衰变常数,而 $\lambda_{5\alpha}$ 是²¹²Po 的衰变常数.表1 给出了²²²Rn、²²⁰Rn 衰变 链的信息.

表 1 ²²² Rn、²²⁰ Rn 衰变链 Table 1 Decay series of²²² Rn.²²⁰ Rn

核素	符号	衰变方式	半衰期	衰变产物
²²² Rn				
$^{222}\mathrm{Rn}$	\mathbf{A}_{Rl}	α	3.82 d	²¹⁸ Po
²¹⁸ Po	A_{R2}	α	3.05 min	²¹⁴ Pb
$^{214}\mathrm{Pb}$	A_{R3}	β	26.8 min	²¹⁴ Bi
²¹⁴ Bi	A_{R4}	β	19.8 min	²¹⁴ Po
²¹⁴ Po	A_{R5}	α	164 µs	²¹⁰ Po
²²⁰ Rn				
$^{220}\mathrm{Rn}$	\mathbf{A}_{T1}	α	55.6 s	²¹⁶ Po
²¹⁶ Po	A_{T2}	α	0.15 s	²¹² Pb
$^{212}\mathrm{Pb}$	A_{T3}	β	10.64 h	²¹² Bi
²¹² Bi	A_{T4}	eta(64%)	60.55 min	²¹² Po
		$\alpha(36\%)$	60.6 min	²⁰⁸ Tl
²¹² Po	A_{T5}	α	164 µs	$^{208}\mathrm{Pb}$

解式(1)、式(2)得:

$$x = \frac{1}{\eta} \cdot \frac{N_1 \alpha_{Tn2} - N_2 \alpha_{Tn1}}{\alpha_{Rn1} \alpha_{Tn2} - \alpha_{Tn1} \alpha_{Rn2}}$$
(14)

$$y = \frac{1}{\eta} \cdot \frac{N_2 \alpha_{Rn1} - N_1 \alpha_{Rn2}}{\alpha_{Rn1} \alpha_{Tn2} - \alpha_{Tn1} \alpha_{Rn2}}$$
(15)

采样气体从²²⁰ Rn 室经管线流至闪烁室内, ²²² Rn、²²⁰ Rn 将会衰变掉一部分,因此应对衰变进 行修正,闪烁室内²²² Rn、²²⁰ Rn 活度分别表示如式 (16)和式(17).

$$x = C_1 e^{-\lambda_R T} \cdot V \tag{16}$$

$$y = C_2 e^{-\lambda_T T} \cdot V \tag{17}$$

其中 C_1 、 C_2 分别是测量环境中²²² Rn、²²⁰ Rn 活 度浓度(Bq/m^3), λ_R 、 λ_T 分别是²²² Rn、²²⁰ Rn 的衰 变常数,T是空气从²²⁰Rn 室流至闪烁室所需的时间,V是闪烁室的有效体积(mL).

将式(14)、式(15)代入式(16)和式(17)可得 *C*₁、*C*₂.

$$C_1 = \frac{e^{\lambda_R T}}{\eta V} \cdot \frac{N_1 \alpha_{Tn2} - N_2 \alpha_{Tn1}}{\alpha_{Rn1} \alpha_{Tn2} - \alpha_{Tn1} \alpha_{Rn2}}$$
(18)

$$C_2 = \frac{e^{\lambda_T T}}{\eta V} \cdot \frac{N_2 \alpha_{Rn1} - N_1 \alpha_{Rn2}}{\alpha_{Rn1} \alpha_{Tn2} - \alpha_{Tn1} \alpha_{Rn2}}$$
(19)

2.2 测量程序

图 3 是²²² Rn、²²⁰ Rn 在单位活度情况下²²² Rn、 ²²⁰ Rn及其子体的 α 总活度随时间变化的曲线.

在1000 s时间范围内,²²² Rn 及其子体的 α 总活度随着时间持续上升,而²²⁰ Rn 及其子体的 α 总活度在200 s后达到平衡.为实现两段法对 ²²² Rn、²²⁰ Rn 的快速测量,应尽可能缩短采样管道, 缩短采样时间,从而降低²²⁰ Rn 的衰减,设定总测 量时间为10 min,为获得尽可能多有关²²⁰ Rn 的信 息,采样结束后应立即开启测量,此外为更好的甄 别²²² Rn、²²⁰ Rn,两个时间段应有较大的间隔.因此 本文推荐测量程序为:在测量结束后立即开启测 量,分别在0-200 s和0-600 s两个时间段进行 测量,²²² Rn、²²⁰ Rn 浓度计算公式中的参数可由计 算机编程得到,公式(20)和(21)如下:

$$C_{1} = \frac{e^{\lambda_{R}T}}{\eta V} \cdot (1596N_{2} - 1465N_{1}) \times 10^{-6} (20)$$

$$C_{2} = \frac{e^{\lambda_{T}T}}{\eta V} \cdot (2578N_{1} - 9585N_{2}) \times 10^{-6} (21)$$

式中, η 为仪器的探测效率,T 为气体流经管 道的时间,由采样管道长度除以流速即得.利用大 流量抽气泵进行采样,采样结束后,立即启动测量 系统进行计数,分别测得 200 s 和 600 s 的 α 计数 值 N_1 、 N_2 ,代入式(20)、式(21)即可计算得到 ²²² Rn、²²⁰ Rn 浓度.

3 结 论

闪烁室法是氡测量的经典方法之一.本文通 过分析闪烁室内²²² Rn、²²⁰ Rnα总活度与时间等的 数值关系,联立关于两个不同时间段α总计数的 两个二元方程,并推导出²²² Rn、²²⁰ Rn 浓度的计算 公式.在此基础上,本文还对闪烁室内²²² Rn、²²⁰ Rn 及其子体α总活度的变化规律进行了分析,给出 了两段法的参考测量程序.相比其他方法,单闪烁 是两段法更简单,能更快速地实现混合环境下 ²²² Rn、²²⁰ Rn 浓度的准确定值.

参考文献:

- [1]朱立,刘海生,肖桂义,等.云南省个旧地区氡地质填 图测量方法比较分析[J].岩矿测试,2001,20(1):
 1-6.
- [2] 杜建国,宇文欣,李圣强,等. 八宝山断层逸出氡地球 化学特征及其与地震对应关系[J]. 地震,1998,18
 (2):155-162.
- [3] 杨孝桐,陈文瑛,翁德通,等. 福建地区空气中氡及其 子体浓度与剂量评价[J]. 中华放射医学与防护杂 志,1990,10(6):404-406
- [4] 白光,滕建华.北京市居民建筑物外停留时间和方式 的调查[J].辐射防护,1984,4(1):33-35
- [5] 张智慧. 空气中氡及其子体的测量方法[M]. 北京:原 子能出版社,1994.
- [6] Abbady A, Abbady A G E, Michel R. Indoor radon measurement with the Lucas cell technique[J]. Appl. Radiat. Isot. ,2004,61(6):1469-1475.
- [7] Sakamoto S, Takakura H. Efficiency of a large size scintillation cell [J]. J. Radioanal. Nucl. Chem., 1998, 237 (1/2):257-260.