文章编号:1673-0062(2012)04-0018-07

岩溶环境中土壤剖面富铀行为的初步研究

李石朋,冯志刚*,唐振平

(南华大学 核资源工程学院,湖南 衡阳 421001)

摘 要:选择黔中地区的4条石灰土剖面作为研究对象,经过精细采样分析,讨论了 石灰土形成过程中U富集的地球化学特征及其对生态环境存在的潜在风险.结果表 明:1)岩—土界面是U既发生大量淋失而又产生显著富集的重要地球化学场所;2) 处于中性条件下的石灰土剖面,释放的U优先与风化流体中的CO₃²⁻发生络合而进 一步迁移淋失;3)石灰土剖面既是表生介质中重要的U储库,又是U的重要次生释 放源,剖面的进一步演化将对环境生态构成潜在的放射性危害. 关键词:铀;岩溶区;石灰土;富集;贵州

中图分类号:P595 文献标识码:A

The Preliminary Study on Enrichment Behavior of Uranium in Soil Profiles under the Karst Environment

LI Shi-peng, FENG Zhi-gang^{*}, TANG Zhen-ping

(School of Nuclear Resource Engineering, University of South China, Hengyang, Hunan 421001, China)

Abstract: Four limestone soil profiles were selected as the subject investigated in Middle Guizhou. Through careful sampling and analyzing, this paper discussed geochemical characteristics of U and its potential risk on superficial environment. The results show: 1) the rock-soil interface is a main place for geochemical reaction, where U is both leached plentifully and markedly relatively richened; 2) when pH is neutral, U released from limestone soil profiles is preferentially complexed with CO_3^{2-} of weathering solution and further leached; 3) limestone soils are important reservoirs as well as secondary releasing origins of U in superficial media. Further development of profiles will pose potential radioactive risk on ecological environment.

key words: uranium; karst region; limestone soil; enrichment; Guizhou Province

收稿日期:2012-11-14

基金项目:国家自然科学基金项目资助(40973070)

作者简介:李石朋(1988-),男,河南新乡人,南华大学核资源工程学院硕士研究生.主要研究方向:放射性核素的表 生迁移.*通讯作者.

0 引 言

铀(U)是一种对生态环境和人体健康构成潜 在危害的天然放射性核素,其在土壤、水体等主要 环境宿体的分布与行为已引起广泛重视[1-3].向环 境释放的 U. 除局地可能受人因污染输入外. 区域 上主要源自岩石风化的贡献.在自然界,碳酸盐岩 中的U含量通常是极低的($0.n \sim 2 \mu g/g$),与花 岗岩、黑色页岩等富 U 岩石相比, 是一类极贫 U 的岩石类型[45].然而,已有研究表明,世界河水中 的溶解态 U 主要来源于流域中灰岩等碳酸盐岩 风化的贡献[6]:对于流经贵州喀斯特地区的乌 江,韩贵琳等[7] 通过水化学计算指出,乌江河水 中的溶解态 U 主要源自流域中碳酸盐岩的风化, 并且其平均浓度(2.67 nM)远高于世界河水的平 均值(0.78 nM)^[6]. 而另一方面,碳酸盐岩风化成 土剖面中的 U 表现出显著富集的特征^[8-11]. 另外, 地中海沿岸及北美洲的岩溶区土壤中已发现存在 明显的氡异常,从而导致建筑物的室内氡超 标^[12-13]. 氡是 U 的衰变子体, 研究指出, 上述岩溶 区的氡异常来自于碳酸盐岩风化的贡献^[12-13].

贫 U 的碳酸盐岩风化,一方面成为流域水系 溶解态 U 的主要贡献者,另一方面又导致风化成土 剖面 U 的显著富集和氡异常.关于 U 在岩石风化 过程中的地球化学行为,目前主要关注于花岗岩、 黑色页岩等富 U 岩石,而对碳酸盐岩等贫 U 岩石 的研究,还十分薄弱.

碳酸盐岩在中国主要分布在以贵州为中心的 西南岩溶区,由于碳酸盐岩酸不溶物含量一般极 低、成土慢,在区域上广泛分布着一层发育浅薄的 碳酸盐岩土壤剖面(厚度一般 <1 m),在土壤学 上称之为石灰土.本文选择黔中岩溶区的4条石 灰土剖面作为研究对象,经过精细采样分析,以期 揭示土壤剖面形成过程中U的地球化学行为及 其对表生环境的可能影响.

1 材料与方法

1.1 区域地质概况及采样

贵州位于 24°37′~29°13′N、103°36′~109° 35′E 的云贵高原东部,全省面积 17.6×10⁴ km². 区内分布自晚震旦世至中三叠世不同时期的浅海 相碳酸盐岩沉积,其面积约占全省面积的62.2%. 在亚热带湿润季风气候条件下,塑造了典型的喀 斯特地貌景观.其中在低山、丘陵垄岗的缓坡地 带,广泛分布着发育浅薄的石灰土,成为区内重要 的土壤类型.

选择黔中地区的天龙(TL)、罗吏(LL)、大关 口(DGK)和龙洞堡(LDB)剖面作为研究对象.4 条石灰土剖面均位于丘陵垄岗的和缓部位,以尽 量减少外来物质的扰动.采样剖面为采石场的人 工揭露,样品采集为自下而上的连续刻槽取样,样 长5 cm 或10 cm.各采样剖面特征见表1.

剖面编号	剖面特征	采样地点		
TL	剖面厚约110 cm,其中土壤层厚15 cm,风化壳呈棕色粘土状, 岩—土界面清晰,下伏基岩为白云岩	安顺市平坝县天龙镇采石场		
LL	剖面厚约95 cm,其中土壤层厚10 cm,风化壳呈黄棕色粘土状, 岩—土界面清晰,下伏基岩为灰岩	贵阳市郊罗吏村		
DGK	剖面厚约30 cm,其中土壤层厚7 cm,风化壳呈红色粘土状, 岩—土界面清晰,下伏基岩为白云岩	贵阳市郊大关口采石场		
LDB	剖面厚约30 cm,其中土壤层厚7 cm,风化壳呈黄棕色粘土状, 岩—土界面清晰,下伏基岩为灰岩	贵阳市郊龙洞堡村		

表1 研究区石灰土剖面的剖面特征

Table 1 The features of limestone soil profiles in the middleGuizhou Province

1.2 测试方法

供试样品的主量元素分析采用传统湿化学分析法,并辅之以原子吸收光谱法测定;U等微量元素的测定采用 Finnigan MAT 公司生产的 ELE-

MENT 型高分辨率 ICP-MS 上进行. 所有测试均用 标样控制,主量元素分析误差 < 2%,微量元素分析 误差 < 10%,分析测试工作在中国科学院地球化学 研究所完成. 粒度分析用英国马尔文仪器有限公司 生产的 Malvern Sizer 2000 型激光粒度分析仪测试, 量程为 0.02 μm ~2 000 μm,分析误差 < 3%,分析 测试在北京大学完成.对于剖面样品及基岩碎样的 pH 值,过 20 目筛后阴干,按岩/水比为 1:2.5 的比 例搅拌静置 30 min 后用 pH 计测定.

- 2 结果与讨论
- 2.1 石灰土剖面 U 的分布特征

TL、LL、DGK 和 LDB 等 4 条石灰土剖面的部 分主量、微量元素含量以及相关特征值见表 2.

表 2	研究剖面的部分主量、微量元素含量及相关特征值

Table 2 The contents of some major and trace elements and relative characteristic indices in limestone soil profiles

样品	深度	质量分数/%			含量/	含量/(µg・g ⁻¹)		SiO_2	粘粒	
编号1)	/cm	Al_2O_3	CaO + MgO	$\mathrm{FeO_T}^{(2)}$	Zr	U	- CIA ³⁷	$/\mathrm{Al}_2\mathrm{O}_3$	/% 4)	рн
TL-T6	10	24.25	4.04	7.77	278.42	9.66	84.46	1.81	26.59	7.49
TL-T5	30	22.7	2.11	9.58	325.50	5 10.53	88.81	2.09	20.90	6.36
TL-T4	50	24.23	2.56	3.2	314.40	5 9.88	85.53	2.05	26.31	6.33
TL-T3	70	29.75	3.09	6.48	197.68	10.55	85.9	1.32	37.58	6.19
TL-T2	90	33.35	3.86	8.15	182.24	9.92	84.0	1.05	39.99	6.75
TL-T1	110	32.13	3.23	8.49	174.40	9.96	89.73	1.18	60.95	7.38
TL-Y	120	0.18	52.72	0.55	3.32	0.73	73.78	16.56	3.07	8.40
LL-T9	5	15.75	1.04	5.45	412.3	13.16	83.81	4.08	8.62	6.46
LL-T8	15	16.91	0.97	5.01	380.33	3 12.31	84.46	3.80	10.20	7.33
LL-T7	35	24.09	1.60	6.51	265.93	3 13.98	84.69	2.18	23.95	7.47
LL-T6	45	25.05	1.50	7.28	269.7	15.87	85.51	2.01	27.70	7.44
LL-T5	55	22.04	1.59	7.62	266.92	2 15.11	83.63	2.41	25.96	7.35
LL-T4	65	21.08	1.64	7.17	270.53	3 15.27	82.2	2.63	25.31	7.45
LL-T3	75	22.04	1.65	7.53	267.6	14.94	82.81	2.43	23.97	7.35
LL-T2	85	23.49	1.80	6.42	269.69	9 13.46	82.37	2.26	23.98	7.26
LL-T1	95	22.04	1.95	6.9	234.34	12.46	79.72	2.42	12.80	7.08
LL-Y	100	0.25	54.70	0.28	3.08	1.65	68.57	14.72	6.0	8.34
DGK-T6	5	20.99	12.9	6.38	167.17	5.40	89.71	1.70	31.94	6.80
DGK-T5	10	29.2	8.88	8.25	187.19	6.56	84.64	1.17	41.64	7.09
DGK-T4	15	31.41	4.56	8.87	187.53	6.92	81.63	1.08	50.40	7.59
DGK-T3	20	34.19	3.39	8.39	190.10	6.98	85.74	1.0	48.71	6.96
DGK-T2	25	32.11	3.52	8.16	200.52	6.86	85.21	1.13	34.59	7.10
DGK-T1	30	31.05	5.03	8.36	176.85	6.47	81.31	1.13	41.22	7.21
DGK-Y	35	0.05	50.50	0.15	2.28	0.34	75.77	29.2	6.38	
LDB-T6	5	14	1.10	5.45	352.79	9.18	83.38	4.74	8.30	6.80
LDB-T5	10	11.95	0.89	4.42	397.22	9.56	82.55	6.07	8.34	7.09
LDB-T4	15	17.5	1.10	4.91	340.13	9.58	85.78	3.63	9.01	7.59
LDB-T3	20	27.04	1.80	6.23	263.05	5 10.49	86.46	1.76	21.35	6.96
LDB-T2	25	24.24	1.82	7.79	242.14	4 10.04	84.93	1.98	28.59	7.10
LDB-T1	30	21.66	2.39	7.03	243.25	5 10.08	80.99	2.31	25.78	7.21
LDB-Y	35	0.26	54.56	0.15	5.80	0.72	74.56	15.77	9.04	

注:1) - Y为基岩, -T_i为风化壳样品;2)全铁;3)化学蚀变指数 CIA = [Al₂O₃/(Al₂O₃ + K₂O + CaO * + Na₂O)]×100,为分子比, CaO * 为硅酸盐相中的 CaO,基岩的 CIA 用其酸不溶物的化学全分析数据求得;4)粘粒指 <2 µm 的粒径部分

从 U、CaO + MgO 含量及 CIA 随剖面深度的变 化图解(见图1)可以看出,岩—土界面是一个重要 的地球化学作用场所,伴随碳酸盐的快速淋失,硅 酸盐也开始了明显分解,与此同时,U 得到显著富 集,其富集倍数为13.56(-T1/-Y 含量比,四条剖 面平均值). 剖面自底部向上,随着风化历程的延长,除个别样品外,CIA 呈逐渐增大的趋势,表现出常态风化壳的发育特征. 剖面中的 CaO + MgO,大多已降到结晶岩红色风化壳的含量范围^[14],说明碳酸盐在岩—土界面已基本淋失殆尽,进一步演化

中 CaO + MgO 的微弱降低,主要源于硅酸盐组分的 缓慢释放.至于图 1c 中 CaO + MgO 含量在剖面上 部的明显反弹,可能有来自局地碳酸盐岩碎屑的少 量混入,在样品前处理过程中也发现有微量游离碳酸盐碎屑的存在.伴随风化作用的进程,U在各剖面中保持稳定,未表现出明显的变化趋势.

在碳酸盐岩风化成土过程中,U表现出显著 富集的特征,相反地,结晶盐类岩石风化剖面中的 U相对于基岩普遍呈现出贫化的趋势^[15-18].

另外,从粘粒、FeO_T含量及 SiO₂/Al₂O₃比随剖 面深度的变化图解(见图 2)可以看出,通过岩—土 界面反应,指示风化强度的粘粒含量迅速增加,脱 硅富铝化过程也充分进行.而它们在剖面向上的变 化特征(SiO₂/Al₂O₃增大、粘粒含量的降低),反映 出石灰土剖面中机械淋溶淀积作用的普遍存在,尤 其像图 2a 直接淀积在剖面的底部.指示铁氧/氢氧 化物生成量的 FeO_T,在 LL 和 LDB 剖面也表现出明 显的淋溶淀积特征.而上述指标在剖面中的变化特 征并未与 U 含量(见图 1)产生明显的相关性,这与 其他岩类风化壳中的 U 与粘粒、铁氧/氢氧化物存 在显著正相关的结论^[3,18-19]明显不符,暗示了石灰 土形成过程中 U 地球化学行为的特殊性.

2.2 U的质量平衡计算

由于岩石风化成土过程中体积的变化以及某

些活化元素的淋失导致另外一些元素的相对富 集,因此元素在剖面上的含量分布特征往往难以 真实反映其地球化学行为.某元素的绝对淋失或 积累的行为可以通过质量平衡计算的方法进行判 断.根据 Brimhall and Dietrich^[20]对一个原位风化 剖面的研究,元素*j*在风化层的质量迁移系数*τ_j*... 可定义为:

 $\tau_{j \cdot w} = (C_{j \cdot w}/C_{j \cdot p})/(C_{i \cdot w}/C_{i \cdot p}) - 1$ 式中, $C_{j \cdot w}$ 为风化层中元素j的含量, $C_{j \cdot p}$ 为元素j在基岩中的含量, $C_{i \cdot w}$ 和 $C_{i \cdot p}$ 分别为参比元素i(不活化元素)在风化层和基岩中的含量. $\tau_{j \cdot w} >$ 0,说明元素j在取样点相对于原岩和不活化性元 素i产生了富集或者有该元素的带入; $\tau_{j \cdot w} = 0$,说 明该元素和参比元素i具有相同的地球化学行 为,没有发生淋失和富集; $\tau_{j \cdot w} < 0$,表示该元素在 取样点相对于参比元素i遭受了淋失,当 $\tau_{j \cdot w} = -1$ 时,表明该元素已经完全淋失.

图 2 粘粒、 FeO_T 含量及 SiO_2/Al_2O_3 比随剖面深度的变化

Fig. 2 The variations of contents of clay-grain and FeO_T and SiO_2/Al_2O_3 with the depth in limestone soil profiles

根据王世杰等^[21]的研究,在碳酸盐岩风化过程中 Zr 表现出更好的稳定性,因此本文选择 Zr 作为参比元素进行质量平衡计算.4 条石灰土剖面中 U 的质量迁移系数随深度的变化见图 3.

可以看出,U表现为强烈淋失状态,其中岩— 土界面是其主要的活化迁移场所(TL、LL、DGK和 LDB的 $\tau_{j,w}$ 分别为 - 0.74、-0.90、-0.75和 -0.66),平均76%以上的U在岩—土界面反应 过程中被淋失.剖面进一步发育过程中,U在LL 和DGK中呈现微弱淋失(<2%),在TL和LDB 中也至多淋失10%左右.另外,根据剖面曲线形 态特征,U在石灰土形成过程中未出现明显淀积现象,即风化过程中释放的U基本被排出剖面.

2.3 石灰土形成过程中 U 的富集行为

上述研究表明,在石灰土剖面的岩—土界面, 伴随碳酸盐的快速溶解,U完成了主要释放淋失 过程,可能主要来自酸溶相,而剖面发育过程中U 的微弱淋失,则主要来自于硅酸盐组分的缓慢 释放.

表生条件下,U对环境中 pH 和 Eh 的变化非 常敏感.在气下环境,U很容易氧化为比较容易溶 解的铀酰离子(UO,²⁺),它的迁移/吸附能力主要 取决于 pH 条件^[5]. Barnett^[22]利用土壤介质在 pH = 2.5~10 条件下对 U⁶⁺ (主要以 UO,²⁺形式 存在)的吸附实验表明,在 pH 值从 4.5 到 5.5 之 间突然显著增大,到 pH = 6 左右达到峰值,在 pH 值从 7.5 到 8.5 及以上由于 UO,2+ 与溶解的碳酸 盐形成碳酸铀酰络合物而使吸附强度迅速降低到 极低点.根据对石灰土剖面及基岩碎样的 pH 值 测定(见表2),两件基岩的 pH 值分别为 8.40 和 8.34,呈弱碱性反应;剖面上 pH 值范围为 6.19~ 7.59,平均值为7.08,呈中性反应.结合 Barnett^[22] 的研究结果,可以认为,在岩--土界面,随着风化 流体对碳酸盐岩的快速溶蚀,从基岩中(主要为 非硅酸盐相)释放的 UO22+优先与碳酸盐溶液中 的 CO₃²⁻形成[UO₂(CO₃)₂]²⁻而大量淋失,成为 U 在石灰土形成过程中的主要淋失场所.随着剖 面进一步发育,尽管游离碳酸盐已淋失殆尽 (DGK 剖面由于微量基岩碎屑混入而例外),但风 化流体中溶解的 CO₂在中性条件下也主要以 CO₃²⁻存在.硅酸盐组分分解过程中缓慢释放的 UO₂²⁺优先与 CO₃²⁻形成稳定络合物而淋失,从而 抑制了剖面中粘土及次生含铁矿物对 UO₂²⁺的吸 附.因此,尽管石灰土剖面机械淋溶淀积作用强 烈,但未表现出 U 的明显淀积特征.

2.4 石灰土剖面中 U 的环境风险评价

虽然碳酸盐岩属于极贫 U 的岩石类型,并且 在风化过程中 U 大量淋失,但由于碳酸盐溶蚀过 程中伴随体积的强烈缩小变化,因此在石灰土剖 面中 U 呈现出显著的富集状态,在 TL、LL、DGK 和 LDB 剖面中的平均含量分别为 10.08 μg/g、 14.06 μg/g、6.53 μg/g 和 9.82 μg/g. U 在上述石 灰土剖面中的含量,高于甚至远高于上陆壳平均 化学组成(UCC)(2.8 μg/g)^[23]、中国土壤 (2.76 μg/g)^[24]、世界土壤(2.0 μg/g)^[25]、中国 黄土(2.5 μg/g)^[26]、中国红壤土(5 μg/g)^[27]以 及其他作者报道的中国部分地区土壤中 U 的平 均值^[28-29],是一类富 U 的土壤类型.因此,石灰土 剖面既是表生介质中重要的 U 储库,又是 U 的重 要次生释放源,剖面中 U 的进一步释放将对环境 生态构成潜在的放射性危害.

3 结 论

通过对贵州岩溶区 4 条石灰土 U 分布特征的研究,取得了以下主要认识:

1) 岩—土界面是 U 既发生大量淋失而又产生 显著富集的重要地球化学场所. 一方面, 伴随碳酸 盐快速溶解, U 充分淋失, 另一方面, 残余的 U 因碳 酸盐溶蚀导致体积的巨大缩小变化而显著富集.

2)中性条件下的石灰土形成过程中,从硅酸盐中释放的 U 优先与风化流体中的 CO₃²⁻发生络合而进一步迁移淋失,从而抑制了剖面中粘土及铁氧/氢氧化物对其的吸附固定.

3) 石灰土剖面既是表生介质中重要的 U 储 库, 又是 U 的重要次生释放源, 剖面的进一步演 化将对环境生态构成潜在的放射性危害.

参考文献:

[1] Nriagu J, Nam D-H, Ayanwola T A, et al. High levels of

uranium in groundwater of Ulaanbaatar, Mongolia [J]. Science of the Total Environment, 2012, 414:722-726.

- [2] Sarin M M, Krishnaswami K, Somayajulu B L K, et al. Chemistry of uranium, thorium, and radium isotopes in the Ganga-Brahmaputra river system: weathering processes and fluxes to the Bay of the Bengal[J]. Geochimica et Cosmochimica Acta, 1990, 54:1387-1396.
- [3] Perez D V, Saldanha M F C, Moreira J C, et al. Total concentration of uranium and thorium in some brazilian soils [J]. Pesquisa Agropecuaria Brasileira (Brazil), 1998,33(8):1417-1423.
- [4] Delaney M L, Boyle E A. Uranium and thorium isotope concentrations in formainiferal calcite[J]. Earth and Planetary Science Letters, 1983, 62:258-262.
- [5] 牟保磊.元素地球化学[M].北京:北京大学出版社, 1999:222-230.
- [6] Palmer M R, Edmond J M. Uranium in river water [J]. Geochimica et Cosmochimica Acta, 1993, 57:4947-4955.
- [7] 韩贵琳,刘丛强,王中良,等.贵州喀斯特地区乌江河水中铀的地球化学研究[J].地质地球化学,1999,27
 (4):66-71.
- [8] 孙承兴,王世杰,刘秀明,等.碳酸盐岩风化壳岩—土 界面地球化学特征及其形成过程——以贵州花溪灰 岩风化壳剖面为例[J].矿物学报,2002,22(2): 126-132.
- [9] 季宏兵,王世杰. 黔中白云岩风化剖面的铅同位素组成 及物源的指示[J]. 地质论评,2011,57(1):109-117.
- [10] 宋照亮,刘丛强,韩贵琳,等. 乌江流域沉积岩风化过 程中铀的富集与释放[J]. 环境科学,2006,27(11): 2273-2278.
- [11] 杨瑞东.贵阳地区碳酸盐岩风化红粘土剖面稀土、微量元素分布特征[J].地质论评,2008,54(3):409-418.
- [12] Vaupotič J, Barišić D, Kobal I, et al. Radioactivity and radon potential of the terra rossa soil [J]. Radiation Measurements, 2007, 42:290-297.
- [13] Sachs H M, Hemandex T L, Ring J W. Regional geology and radon variability in buildings [J]. Environment International, 1982, 8:97-103.
- [14] 黄镇国,张伟强,陈俊鸿,等.中国南方红色风化壳 [M].北京:海洋出版社,1996:40-51.
- [15] Pliler R, Adams J A S. The distribution of thorium and uranium in a Pennsylvanian weathering profile [J]. Geochimica et Cosmochimica Acta, 1962, 26:1137-1146.
- [16] Tzortis M, Tsertos H. Natural radioelement concentration in the Troodos Ophiolite Complex of Cyprus [J]. Journal of Geochemical Exploration, 2005, 85:47-54.
- [17] Dosseto A, Turner S P, Chappell J. The evolution of weathering profiles through time: new insights from ura-

nium-series isotopes [J]. Earth and Planetary Science Letters, 2008, 274: 359-371.

- [18] Taboada T, Cortizas A M, García C, et al. Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain [J]. Science of the Total Environment, 2006, 356:192-206.
- [19] Ticknor K V. Uranium sorption on geological materials[J]. Radiochim Acta, 1994, 64:229-236.
- [20] Brimhall G H, Dietrich W E. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis [J]. Geochimica et Cosmochimica Acta, 1987, 51:567-587.
- [21] 王世杰,孙承兴,冯志刚,等.发育完整的灰岩风化壳的矿物学及地球化学特征[J].矿物学报,2002,22 (1):19-29.
- [22] Barnett M O, Jardine P M, Brooks S C, et al. Adsorption and transport of uranium(VI) in subsurface media[J]. Soil Science Society of America Journal, 2000, 64: 908-917.

- [23] Taylor S R, Mclenna S M. The continental crust: its composition and evolution [M]. London: Blackwell Scientific Publications, 1985:312.
- [24] 中国环境监测总站. 中国土壤元素背景值[M]. 北京:中国环境科学出版社,1990:12-13.
- [25] Bowen H J M. Environmental chemistry of elements [M]. London: Academic Press, 1979:59.
- [26] 张钟先,田均良,郝玉怀,等.黄土区土壤中天然放射 性元素背景值研究[J].中国环境科学,1993,13 (4):288-292.
- [27] 全国环境天然放射性水平调查总结报告编写小组. 全国土壤中天然放射性核素含量调查研究(1983-1990年)[J].辐射防护,1992,12(2):122.
- [28] 孙景信,王玉琦,屠树德.土壤中微量元素铀(U)和 钍(Th)的含量和分布[J].科学通报,1990(6): 457-460.
- [29] Xu N, Wei F S, Ten E J, et al. Evaluation of indigenous concentrations of uranium and thorium in soils of China [J]. Communications in Soil Science and Plant Analysis, 1993, 24:1795-1803.