文章编号:1673-0062(2012)01-0010-05

β计数法测定水环境中的¹³¹ Ι

彭安国1,周 鹏2,肖静水1,赵 力2,赵志伟1

(1. 南华大学核资源与核燃料工程学院,湖南衡阳 421001;2. 国家海洋局南海环境监测中心,广东广州 510300)

摘 要:¹³¹I是核医学应用中非常重要的核素,同时也是核泄漏事故中释放的主要裂 变核素之一,其准确测定对于环境保护具有非常重要的意义.本文详细描述了不同水 环境中的¹³¹I的β计数测定法,并对海水、放射性废水等不同水环境样品进行了检 测,结果表明:1)本研究中碘的化学回收率为85.39%~94.47%,平均值为90.90%; 2)海水样品平行样中¹³¹I的体积比活度为0.6734~0.7351Bq/m³,放射性废水平行 样中¹³¹I的体积比活度为16.80~17.43Bq/m³,平行样研究结果表明此方法的重现 性很好. 关键词:β计数;¹³¹I;水环境 中图分类号:TL816⁺.2;X837 文献标识码:A

Determination of ¹³¹I in Water Environment by β Counting Method

PENG An-guo¹, ZHOU Peng², XIAO Jing-shui¹, ZHAO Li², ZHAO Zhi-wei¹

(1. School of Nuclear Resources and Nuclear Fuel Engineering, University of South China, Hengyang, Hunan 421001, China; 2. South China Sea Environment Monitoring Center, State Oceanic, Administration People's Republic of China, Guangzhou, Guangdong 510300, China)

Abstract: ¹³¹I is a very important nuclide applied in nuclear medicine; also it is one of the most important fission nuclides released from nuclear leak accidents, so accurate determination of ¹³¹I is very important for environment protection. First, we described β counting method in detail for ¹³¹I in different water environment; Second, we determined ¹³¹I in ocean water and radioactive waste water by this method. The experimental results showed that 1) The full chemical recovery rates of iodine varied from 85.39% to 94.47% and the average is 90.90%; 2) The volume activities of ¹³¹I in four parallel samples of ocean water were 0.673 4 ~ 0.735 1 Bq/m³, while in radioactive waste water, the volume activities of ¹³¹I were 16.80 ~ 17.43 Bq/m³; the results of parallel sample determination suggested that reproducibility was good for this method.

key words: β counting; ¹³¹I; water environment

收稿日期:2011-11-10

基金项目:国家自然科学基金资助项目(40806031);南华大学科研基金资助项目(WT-KF-2010-01;2007×QD36) 作者简介:彭安国(1974-),男,湖南邵阳人,南华大学核资源与核燃料工程学院副教授.主要研究方向:环境放射化学.

¹³¹ I,又称为碘 - 131,半衰期为 8.040 ± 0.001 d,是元素碘中的一种重要人工放射性核素,主要来自于²³⁵ U 的裂变、¹³¹ Te 的β衰变等过程.在核医学中,¹³¹ I 可直接用于甲状腺功能检查和甲状腺疾病治疗,还可用来标记许多化合物,供体内或体外诊断疾病用.除了核医学方面的应用外,¹³¹ I 还可用来寻找地下水和测定地下水的流速、流向,查找地下管道泄漏、测定油田注水井各油层吸水能力及其变化等,应用非常广泛.但由于¹³¹ I 是一种挥发性很强的放射性核素,在大气中的传播速度很快,而且¹³¹ I 衰变产生的射线可以导致细胞表达异常,变性或坏死,异化后形成恶性肿瘤.同时,水体中的¹³¹ I 通过被水生生物吸附或吸收进入水产品,通过传递代谢在生物链中积累,进而造成对人体的危害.

核电厂、核燃料后处理厂等正常运转情况下 排放的废气、废水等都会含有一定量的¹³¹I,但含 量较低,而且¹³¹I衰变速度很快,因此,对周围环境 的影响较小,但核事故却不同,其所排放的废气和 废水中¹³¹I含量非常很高.譬如:2011年3月,日 本福岛核事故发生后,几十公里远的福岛县饭馆 村被测出每公斤自来水的碘放射性活度达965贝 可,比日本原子能安全委员会制定的标准高3倍 以上^[1],然后,在我们国家的上海、广州等地也有 监测出,这表明日本核泄漏的放射性物质随大气 扩散及海水扩散可能已抵达我国境内^[2].由此可 见,对核电站、乏燃料后处理厂等附近环境的大气 和水体,尤其是非正常排放过程释放的¹³¹I,必须 进行长期的监测,这对防治放射性污染,保护环 境、保障人体健康、促进核能、核技术的开发与和 平利用都具有重要而深远的意义.

目前国内外对¹³¹I研究的的报道大多局限于 生物、大气、食品中¹³¹I或总碘量的测定^[3-11],对海 水和放射性废水中¹³¹I研究的报道非常少.直到日 本福岛核事故出现后,国内外才陆续发表了一些 关于¹³¹I研究的报道^[3-5,10],但测定的方法大都局 限于质谱法、中子活化分析等方法^[3-5,9-11],这些 方法对仪器的要求很高,其实用性受到很大限制. 本文在参考了大气中、牛奶和植物中¹³¹I的各种测 定方法^[3-4,8,13-14]等基础上对分析流程进行了修 改,初步拟定了海水、放射性废水中¹³¹I的测定步 骤,旨在建立一个适合于海水、放射性废水等组份 复杂并有其他放射性核素干扰的情况下的¹³¹I测 定方法,为以后不同环境水体中¹³¹I的简易分析提 供参考. 1 实验部分

1.1 试剂与仪器

试剂:次氯酸钠溶液、亚硫酸钠溶液、四氯化碳溶液、硝酸银溶液、无水乙醇、¹³¹I参考溶液、碘载体溶液、¹³⁷Cs参考溶液等溶液.实验用水为二次蒸馏水.

仪器:BH1227 型 4 路低本底α/β测量仪(北 京核仪器厂)和 CPA1003S 电子天平(北京赛多利 斯天平有限公司).BH1227 型 4 路底本底α/β测 量仪的探测器型号由 GG14/BH1 – CR120 型低噪 声光电倍增管和 GG14/BH1 – ST – 1221 型低本 底α、β 闪烁体组成,其性能指标:对于⁹⁰Sr – ⁹⁰Y β 源,效率比≥50% 时,本底≤0.20 $\frac{1}{(cm^2 \cdot min)}$;对 于²³⁹ Pu α 源,效率 比≥ 80% 时,本底 ≤ 0.008 $\frac{1}{(cm^2 \cdot min)}$. CPA1003S 电子天平的相关参 数:精度为 0.001 g;量程为 1 000 g;称盘尺寸为 $\phi = 110 \text{ mm}, 三角秤盘的平均响应时间≤1.5 s.}$ 1.2 样品的采集及处理

1.2.1 样品的采集

本次试验中,用聚乙烯塑料桶取海水、某放射 性废水样品各 0.2 m³,各自搅匀后都平均分装于 4 个容器中,这样获得 4 个海水平行样品和 4 个 放射性废水平行样品,依次标为"海水 1、海水 2、 海水 3、海水 4、废水 1、废水 2、废水 3、废水 4",每 个样品各 0.05 m³.

1.2.2 ¹³¹I 的富集

每个样品经澄清过滤后,取上清液,在水样品 中加入2 mL 碘载体(载体碘浓度:1 mg/mL),搅 匀.依次加入5.0~8.0 mL 3.0% 次氯酸钠溶液、 1.5~2.0g盐酸羟胺晶体、1.0~1.5g亚硫酸钠固 体,搅匀.用氢氧化钠溶液或硝酸溶液调整pH=6 -7,搅拌30 min,将溶液通过强碱性 NO₃⁻型阴离 子树脂,用100 mL 超纯水洗柱,弃去流出液.然后 用250 mL 3.0% NaClO 解析液通过阴离子交换柱, 收集流出液.再用100 mL 超纯水洗涤,收集流出 液.合并流出液,转入1000 mL 分液漏斗中.

向分液漏斗中加入 20 mL 四氯化碳,30 mL 亚硝酸钠溶液,再加入浓硝酸调 pH 至 1 后振荡 2 min.静置 15 min 后将有机相转移到 100 mL 分 液漏斗中.再用 20 mL、15 mL 和 5 mL 的四氯化碳 分别进行第二次,第三次和第四次萃取,合并有机 相.在有机相中加入等体积的超纯水,再加 8 滴亚 硫酸氢钠溶液后振荡 2 min,静置分层,将有机相转移到另一个分液漏斗中,备用.将水相转移入100 mL 烧杯中.在有机相中加入 5.0 mL 超纯水,振荡 2 min,静置分层,弃去有机相,合并水相.将上述烧杯中含碘的水溶液加热至微沸,除去剩余的四氯化碳.冷却后,在搅拌下滴加浓硝酸,当溶液呈金黄色时,立即加入 7.0 mL 硝酸银溶液,产生黄色碘化银沉淀,准备制源.

1.2.3 制源、测量与计算

将碘化银沉淀抽滤后于 110℃烘干 15 min,在 干燥器中冷却后称重. 计算化学回收率. 然后将载 有沉淀源的不锈钢垫圈放置到透明胶带上,盖上质 量厚度为 3 mg/cm²的塑料膜,用镊子将垫圈周围 的粘合在中间,粘牢后取下样品源,剪齐外缘,待 测.将待测源置于低本底 β 测量仪中立即测量. 记 下测量时间(日期和小时). 测量时间的长短视源 的活度而定. 测量相对偏差应小于或等于 15%.

1.2.4 ¹³¹I 的化学回收率的计算

$$Y_{131_{\rm I}} = \frac{m_2 \cdot M_{\rm I}}{m_1 \cdot M_{\rm AgI}} \times 100\%$$
(1)

式中:Y₁₃₁表示¹³¹I的化学回收率,%;m₁表示加 入碘载体中碘的重量(忽略碘 – 131 参考溶液中碘的 量),g;m₂表示 AgI 样品源净重,g;M₁表示碘的原子 量,126.90;M_{AgI}表示碘化银的化学式量,234.77. 1.2.5 标准源样品绘制自吸收标准曲线

取7个10 mL 烧杯分别加入0.5,1.0,1.5,2.0, 2.5,3.0,3.5 mL 碘载体溶液. 然后各加入0.1 mL 碘-131 标准溶液(约4050 cpm),按照1.2.2 的方 法,制成与样品测定条件一致的薄源,在低本底β测 量装置上测定放射性活度.各源的放射性活度经化 学回收率校正为*I*,以*I*₀为标准,求出不同样品厚度 的碘化银沉淀标准源*I*的自吸收效率ε,标准源样品 的化学回收率计算方法同1.2.4 中式(1).

1.2.6 ¹³¹I体积比活度的计算

$$A_{131_1} = \frac{n_s}{\varepsilon \cdot f \cdot \eta \cdot Y \cdot V} \tag{2}$$

式中A 表示样品的体积比活度, Bq/L, n_s 表示 样品的净计数率, cps; η 表示仪器的探测效 率,%; Y 表示¹³¹I的化学分离全程回收率,%; V为海水水样体积, dm³; ε 表示自吸收效率; f 为衰 变引起的时间校正因子, 计算公式为 $f = e^{-\lambda t}$, 式 中 λ 为¹³¹I的衰变常数, d⁻¹, t 为样品采样到测量的 时间间隔, d.

2 结果与讨论

2.1 标准源样品¹³¹I 全程化学回收率结果

按照式(1)分别计算了7个标准源的全程化 学回收率,结果见表1.

	1 able 1	I ne full cr	iemical recove	ry rates of	1 criterion		
序 号	1	2	3	4	5	6	7
源液/mL	0.25	0.25	0.25	0.25	0.25	0.25	0.25
载体/mL	0.50	1.00	1.50	2.00	2.50	3.00	3.50
AgI 的重量 m ₂ /mg	8.70	18.20	27.62	36.39	45.56	54.52	64.61
碘的初始 m ₁ /mg	5.00	10.00	15.00	20.00	25.00	30.00	35.00
回收率 Y1311	94.07	98.40	99.51	98.36	98.50	98.24	99.78
Y ₁₃₁ 平均值				98.12			

表 1 ¹³¹ I标准源全程化学回收率

2.2 标准源的自吸收曲线

将 1.3 制好的不同质量厚度的碘化银沉淀标准 源放入 BH1227 型 4 路底本底 α/β 测量仪进行测 量,通过计算,结果列入表2.以自吸收系数 ε 为纵坐标,以碘化银沉淀标准源质量厚度为横坐标绘制自吸收标准曲线图(图1)并给出标准曲线方程.

表 2¹³¹ I 标准源自吸收效率的测定结果

Table 2The results of self absorption efficiency of ¹³¹ I criterion								
序号	1	2	3	4	5	6	7	
AgI 重量 m ₂ /mg	8.702	18.204	27.615	36.394	45.557	54.524	64.609	
AgI 质量厚度/(g・cm ⁻²)	0.002 77	0.005 79	0.008 79	0.011 6	0.014 5	0.017 4	0.020 6	
自吸收效率 ε	0.978 9	0.934 1	0.8896	0.8479	0.804 8	0.761 8	0.714 3	

efficiency and mass thickness

2.3 水环境样品的全程化学回收率及体积比活度

依上述的方法,分别测定了海水样品和放射 性废水样品"海水1、海水2、海水3、海水4、废水 1、废水2、废水3、废水4",从取样到测量的时间 间隔为1d,故 $f = e^{-\lambda t} = 0.9147$.同时,按照上述 方法分别计算出每个样品的全程化学回收率 Y_{I-131} 、据2.2中的曲线方程计算出自吸收效率 ε , 仪器探测效率假定与标准源样品测定时一致,均 为24.0%(根据标准源样品的已知活度与测定结 果计算获得),这样通过β计数器的净记数率 cps 依式(2)可计算出样品的体积比活度A,结果列人 表3.

表3	水环境样品中 ¹³¹ I的全程化学回收率及体积比活度

Table 3 The full chemical recovery rates and volume activities of ¹³¹I in water environment samples

序 号	海水1	海水2	海水3	海水 4	废水1	废水2	废水3	废水4
水样体积 V/ m ³	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050
碘的初始量 m_1/g	0.020 0	0.020 0	0.020 0	0.020 0	0.020 0	0.020 0	0.020 0	0.020 0
AgI 的重量 m ₂ /mg	0.032 0	0.032 7	0.035 4	0.034 6	0.034 8	0.033 9	0.034 0	0.035 1
质量厚度/(g·cm ⁻²)	0.010 2	0.0104	0.011 3	0.011 0	0.011 1	0.0108	0.010 8	0.011 2
回收率 Y/ %	85.39	87.26	94.47	92.33	92.87	90.46	90.73	93.67
均值 Y/ %	90.90							
净计数率 n _s /cps	0.005 5	0.005 9	0.006 1	0.006 4	0.147 0	0.149 2	0.146 2	0.152 0
探测效率 $\eta/\%$	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
时间衰变因子 f	0.9174	0.9174	0.9174	0.9174	0.9174	0.9174	0.9174	0.9174
自吸收效率 ε	0.868 8	0.865 5	0.8527	0.856 5	0.8556	0.8598	0.8594	0.854 2
体积比活度 $A/(Bq \cdot m^{-3})$	0.673 4	0.7096	0.6879	0.735 1	16.80	17.43	17.03	17.26
均值 A/(Bq・m ⁻³)	0.701 5				17.13			

3 结 论

在参考了大气及牛奶中¹³¹I的测定方法的基础上,根据¹³¹I具有β放射性的性质,制定了β计数测定海水、放射性废水等不同水环境样品中¹³¹I的分析测试方法,具体过程包括样品的采集、离子交换、萃取、制源、β计数等,最后计算出全程化学回收率及体积比活度,从结果来看,可获得以下几点结论:

1)标准源样品的全程化学回收率为94.07% ~99.78%,平均值为98.12%,海水及放射性废 水样品的全程化学回收率为85.39%~94.47%, 平均值为90.90%,略低于标准源样品,这主要是 由于后者的体积达到了0.05 m³,在化学分离过 程中有损失.但总体来看,化学回收率仍然较高.

2)标准源样品的自吸收效率与质量厚度之间的关系曲线方程为 $y = -14.84x + 1.02(R^2 = -14.84x)$

0.933 6),相关性很好.

3)海水样品的 4 个平行样的体积比活度为 0.673 4~0.735 1 Bq/m³,放射性废水样品的体积 比活度为 16.80~17.43 Bq/m³,不同水环境样品 通过此测定方法,数据重现性很好,说明此方法在 测定不同环境水样品是切实可行的.

参考文献:

- [1] 新华. 日限制超标农产品上市[J]. 农产品市场周刊, 2011(12):32-32.
- [2] 王沛,黄帅.关注食品放射性检测[J].进出口经理 人,2011(6):50-51.
- [3] Takami Morita, Kentaro Niwa, Ken Fujimoto. Detection and activity of iodine-131 in brown algae collected in the Japanese coastal areas[J]. Science of The Total Environment, 2010, 408(16): 3443-3447.

(下转第23页)

(上接第13页)

- [4] Jessica Veliscek Carolan, Catherine E Hughes, Emmy L Hoffmann. Dose assessment for marine biota and humans from discharge of ¹³¹I to the marine environment and uptake by algae in Sydney [J]. Australia. Journal of Environmental Radioactivity, 2011, 102(10):953-963.
- [5] Bolsunovsky A, Dementyev D. Evidence of the radioactive fallout in the center of Asia (Russia) following the Fukushima Nuclear Accident [J]. Journal of Environmental Radioactivity, 2011, 102(11):1062-1064.
- [6] 温琳. 测定奶粉中痕量碘的方法研究[J]. 山西农业 科学,2009,37(12):20-21.
- [7] 周荣荣,陈建文. 富碘食品含碘量的测定[J]. 中国卫 生检验杂志,2010,20(12):3234-3236.
- [8] 黄福琴,王利华. 植物碘—131 分析测量中的经验与 教训[J]. 污染防治技术,2010,23(4):37-39.
- [9] 陈光,寇琳娜,周谙非,等.离子色谱—安培检测器测 定食品中的碘[J].食品科学,2010,31(18):292-294.

- [10] Luisa Maria Fernández-Sánchez, Pilar Bermejo-Barrera, José Maria Fraga-Bermudez, et al. Determination of iodine in human milk and infant formulas [J]. Journal of Trace Elements in Medicine and Biology, 2007, 21 (Supplement 1):10-13.
- [11] 张伟娜,陈杭亭,谢学锦,等.电感耦合等离子体质谱 法测定食盐及其代谢产物中碘的含量[J].吉林师 范大学学报(自然科学版),2010,31(3):6-8.
- [12] 林新华,李春艳,陈革林. 微分脉冲极谱法测定海水中的碘[J]. 福建医科大学学报,2001,35(2): 180-183.
- [13] 赵志飞,储溱,方金东. 电感耦合等离子体质谱法测 定湖泊水中痕量溴、碘[J]. 资源环境与工程,2009, 23(3):324-326.
- [14] 安华娟,张明杰,戴雪峰,等. 电感耦合等离子体质谱 法测定地质样品中痕量碘[J].知识与经验,2010,46
 (6):692-693.