文章编号: 1673-0062(2009)04-0044-05

鱼鼓型网格线性有限元方法及收敛性分析

罗迪凡1,张 敏1,谭 林1,赵建斌2

(1. 南华大学 数理学院, 湖南 衡阳 421001; 2 宾洲学院 计算机科学学院, 山东 宾洲 256603)

摘 要:通过用几何分解法对二维平面上的 Possion方程边值问题进行研究.在二维平面上对有限元空间进行鱼股型剖分,这种剖分具有良好的剖分过渡性,且单元之间过渡相对平稳.由网格剖分的自适应性保证了计算解的精确可靠.然后,利用巧妙的证明及推理,避开烦琐的计算,从而得出具有较好逼近性的分析结果.
 关键词:剖分结点;鱼鼓型;插值结点;插值基函数;能量内积
 中图分类号: 0241.82

The Linear Finite E km entM ethod and Convergement Analysis on Fish's Drum Grids

LUO Di-fan¹, ZHANG M in¹, TAN L in¹, ZHAO Jian-b in²

(1. School of M athematics and Physics, University of South China, H engyang H unan 421001, China
2. Department of Computer Science and Technology, Binzhou University, Bingzhou, Shandong 256603, China)

Abstract The numerical calculation for the boundary value problem of Possion equation is researched on the two-dimensional domain, using geometric decomposition method in this paper H ere fish's drum type meshes are subdivided, which has good subdivision transitionalty. The transition between the units is relatively steady. It is reliable and accurate that the adaptive of net subdivision has guaranteed the solution of calculation. Then, by ingenious identification and reasoning the analysis results with good approximation are attained, avoid ing convoluted calculation

Key words subdivision pints, fish's dum grids, inserting value pints, base function of inserting value, inner product in energy

有限元方法是解微分方程问题^[1-2]的一类数 值解法.基本思想就是把一个连续体人为的分割 成有限个单元,即把一个结构看成由若干通过结 点项链的单元组成的整体,先进行单元分析,然后 再把这些单元组合起来代表原来的结构.它的基

础分两个方面:一个是变分原理,一个是剖分原 理.从第一个方面看,它是传统的能量法即李兹 – 伽辽金方法的一种变形.从第二个方面看则它是 差分方法即网格法的一种变形.有限元网格生成 就是将工作环境下的物体离散成简单单元的过

收稿日期: 2009-09-08

作者简介:罗迪凡(1973-),男,湖南湘潭人,南华大学数理学院讲师,硕士.主要研究方向:偏微分方程数值解. © 1994-2012 China Academic Journal Electronic Publishing House, All rights reserved. http://www.cnki.net

程,现有有限元网格剖分方法有拓扑分解法、结点 连元法、网格模板法、映射法和几何分解法^[3].常 见的剖分网格有 Regular网格, Criss- Cross网格, Union Jack 网格. Chevron 网格^[4-7]. 本文在二维 平面上对有限元进行简单的剖分.将平面剖分为 鱼鼓型,再对其进行分析研究。

1 二维平面上鱼鼓型线性元的计算

设 π_n 为n次多项式函数全体构成的集合.对 应的三角形剖分如图 1.

剖分节点 (i, j), 插值节点 (i, j), $i j \in Z$ $V = \{u : u \mid_e \in \pi_{\mathbb{H}} \forall e \in T \blacksquare u \in C(\mathbb{R}^2)\},\$ $T = \{e_i : i, j \in \mathbb{Z}\}.$

记 $C(\mathbf{R}^2)$ 表示在 \mathbf{R}^2 上连续函数的集合,其中 T为所有剖分单元全体构成的集合, Suppf为在某 个有界区间外边为零的一个连续函数 f 的支撑, 即在区间外边恒等于零的最小开集. 由图 1可知. 有两种类型的插值基函数,下面分两种情况进行 详细讨论

第一种情况,如图 2所示.

$$\begin{split} & \begin{array}{c} \varphi_{00}\left(x,\,y\right) \, \overline{\textbf{\textit{m}}} \mathbb{L} \\ & (1) \, \varphi_{00}\left(x,\,y\right) \in V; \\ & (2) \, \varphi_{00}\left(i\,j\right) = \, \delta_{0} \, \delta_{0} \,\,\forall\left(i\,j\right) \in Z^{2}. \\ & \begin{array}{c} \mathbb{D} \ Supp \, \varphi_{0} = \, (-1,\,1) \times (0,\,1) \cup \{(x,\,y) \mid -1 < \\ & \mathbb{B} \ 2 \ \exists) \beta \notin \pi, \pi \in \mathbb{B} \\ & y \leq 0 \ -1 \ -y < x \leq 1 + y \}. \\ & \begin{array}{c} \mathbb{F}_{ig} \ 2 \ \text{Diagram of subdivision units} \\ & \varphi_{10}\left(x,\,y\right) \, \overline{\textbf{\textit{m}}} \mathbb{L} \\ & 1 \ -y, \quad e_{1} \cup e_{2}, \\ & 1 \ -y, \quad e_{1} \cup e_{2}, \\ & 1 \ +x, \quad e_{3}, \\ & 1 \ +x + y, \quad e_{4}, \\ & 1 \ -x \ -y, \quad e_{5}, \\ & 1 \ -x \ -y, \quad e_{5}, \\ & 1 \ -x \ -y, \quad e_{5}, \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (0,2) \times (-1,\,0) \cup \{(x,\,y) \mid 0 \leq y \\ & 0 \ Supp \, \varphi_{10} = \, (x,\,y) = \, (x,\,y$$

图 3 剖分单元示意图 Fig 3 Diagram of subdivision units

天士结点基函数,我们有
$\Psi_{i,j}(x,x) = \begin{cases} \Psi_{00}(x-k,y-l) & k \text{ blay}; \end{cases}$
$\Psi_{10}(x, y) = \int \Phi_{10}(x - k + 1, y - l) k$ 为奇数;
其中 എ, , 满足下列条件:
$(1) \Psi_{k,l}(x, y) \in V;$
$ \textcircled{2} \Psi_{k \ l} \left(\ i \ j \right) \ = \ \ \delta_{k} \ \delta_{l}, \ \forall \ (\ i \ j \ k, \ l) \ \in \ Z^{2}. $
规定剖分结点与插值结点相同,且插值结点
类型为两类.
$\varphi_{i}(x,y) = \begin{cases} \varphi_{00}(x-i,y-j) & i \end{pmatrix} H B B;$
$\varphi_{10}(x, y) = \int \varphi_{10}(x - i + 1, y - j)$ i为奇数;
进一步,定义区域 Ω上的能量内积为
$a_{\Omega}(u, v) = \int_{\Omega} \cdot u \cdot v \mathrm{d}x \mathrm{d}y.$

特别地

 $a(u, v) = \int_{R_2} \dot{\cdots} u \dot{\cdots} v \, dx \, dy$ 同时, 还定义区域 Ω 上的 L^2 内积为

 $(u, v)_{\Omega} = \int_{\Omega} u v \mathrm{d}x \,\mathrm{d}y.$

特别地

 $(u, v) = \int_{R^2} uv \, \mathrm{d}x \, \mathrm{d}y.$

当 i为偶数时,有 $\frac{\mathbf{E}}{\mathbf{E}} e_0 \perp \int_0^1 \int_0^x d\mathbf{x} \, d\mathbf{y} = \int_0^1 d\mathbf{x} \, d\mathbf{x} = \frac{1}{2} x^2 |_0^1 = \frac{1}{2}.$ (x^ky^l, Ψ_{00})_{e5} = $\int_0^1 - \frac{1}{2} \int_0^1 \lambda_k^k \lambda_2^l \lambda_3 = \int_0^1 \frac{1}{2} (x^k y^l, \Psi_{00})_{e5} = \int_0^1 \frac{1}{2} \int_0^1 \lambda_k^k \lambda_2^l \lambda_3 = \int_0^1 \frac{1}{2} \int_0^1 \frac{1}{2} (x^k y^l, \Psi_{00})_{e5} = \int_0^1 \frac{1}{2} \int_0^1 \frac{1}{2} \int_0^1 \frac{1}{2} (x^k y^l, \Psi_{00})_{e5} = \int_0^1 \frac{1}{2} \int_0^1 \frac{1}{2} \int_0^1 \frac{1}{2} (x^k y^l, \Psi_{00})_{e5} = \int_0^1 \frac{1}{2} \int_0$

$$\begin{split} \underbrace{\Xi 2 (A + 2 h K)}_{(k)} &= \sum_{0}^{1} \int_{0}^{2} \int_{0}^{2} dx \, dy = \int_{0}^{1} \int_{0}^{2} 2 - 2y) \, dy = 2 \\ -y^{2} |_{0}^{1} = 1 \\ \underbrace{\Xi e_{0} \bot}_{0} \int_{0}^{2} \int_{0}^{2} dx \, dy = \int_{0}^{0} \int_{0}^{2} 2 - 2y) \, dy = 2 \\ \frac{1}{2} \cdot \\ \underbrace{\Xi e_{0} \bot}_{1} = 1 \\ \underbrace{\Xi e_{0} \bot}_{1} \int_{0}^{0} \int_{-}^{2} dx \, dy = \int_{0}^{0} 2(1 + x) \, dx = 2 + \\ x^{2} |_{-1}^{0} = 1 \\ \underbrace{\Pi E e_{0} \bot}_{1} \int_{0}^{1} \int_{-}^{2} dx \, dy = \int_{0}^{1} 2(1 - x) \, dx = 2 - \\ x^{2} |_{0}^{1} = 1 \\ \underbrace{\Xi e_{0} \bot}_{1} \int_{0}^{1} \int_{-}^{2} dx \, dy = \int_{0}^{1} 2(1 - x) \, dx = 2 - \\ x^{2} |_{0}^{1} = 1 \\ \underbrace{\Pi E e_{0} (\Psi_{0})}_{0} \left(\frac{\Psi_{0}}{\Psi_{0}} \right) = \frac{1}{2} + 1 + \frac{1}{2} + 1 + 1 = 4 \\ \underbrace{\Xi i h G B B H}_{0} \left(\frac{\Psi_{0}}{\Psi_{0}} \right) = 1 + \frac{1}{2} + 1 + \frac{1}{2} + 1 = 4 \\ \underbrace{\Xi i h G B B H}_{0} \left(\frac{\Psi_{0}}{\Psi_{0}} \right) = 1 + \frac{1}{2} + 1 + \frac{1}{2} + 1 = 4 \\ \underbrace{\Xi i h G B B H}_{0} \left(\frac{\Psi_{0}}{\Psi_{0}} \right) = \frac{1}{1} + \frac{1}{2} + 1 + \frac{1}{2} + 1 = 4 \\ \underbrace{\Xi i h G B B H}_{0} \left(\frac{\Psi_{0}}{\Psi_{0}} \right) = \frac{1}{1} + \frac{1}{2} + 1 + \frac{1}{2} + 1 = 4 \\ \underbrace{\Xi i h G B B H}_{0} \left(\frac{\Psi_{0}}{\Psi_{0}} \right) = \frac{\Psi_{0}}{(1 - 1)^{2}} + \frac{1}{2} + 1 + \frac{1}{2} + 1 = 4 \\ \underbrace{\Xi i h G B B H}_{0} \left(\frac{\Psi_{0}}{\Psi_{0}} \right) = \frac{\Psi_{0}}_{0} \left(\frac{\Psi_{0}}{\Psi_{0}} \right) = \frac{\Psi_{0}}{(1 - 1)^{2}} + \frac{1}{2} + 1 + \frac{1}{2} + 1 = 4 \\ \underbrace{\Xi i h G B B H}_{0} \left(\frac{\Psi_{0}}{\Psi_{0}} \right) = \frac{\Psi_{0}}{(1 - 1)^{2}} + \frac{1}{2} + 1 + \frac{1}{2} + 1 = 4 \\ \underbrace{\Xi i h G B B H}_{0} \left(\frac{\Psi_{0}}{\Psi_{0}} \right) = \frac{\Psi_{0}}{(1 - 1)^{2}} + \frac{1}{2} + 1 + \frac{1}{2} + 1 = 4 \\ \underbrace{\Xi i h G B B H}_{0} \left(\frac{\Psi_{0}}{\Psi_{0}} \right) = \frac{\Psi_{0}}{(1 + 1) (k + 1 + 3) (k + 1 + 2)^{2}} \\ \underbrace{\Psi_{0}}_{0} \int_{0}^{1} \frac{\Psi_{0}}{\Psi_{0}} = \frac{\Psi_{0}}{(1 + 1) (k + 1 + 2)^{2}} \\ \underbrace{\Psi_{0}}_{0} \int_{0}^{1} \frac{\Psi_{0}}{\Psi_{0}} = \frac{\Psi_{0}}{(1 + 1) (k + 1 + 3)} \\ \underbrace{\Psi_{0}}_{0} \int_{0}^{1} \frac{\Psi_{0}}{\Psi_{0}} = \frac{\Psi_{0}}{0} \int_{0}^{1} \frac{\Psi_{0}}{\Psi_{0}} \int_{0}^{1} \frac{\Psi_{0}}{\Psi_{0}} \\ \underbrace{\Psi_{0}}_{0} \int_{0}^{1} \frac{\Psi_{0}}{\Psi_{0}} = \frac{\Psi_{0}}{0} \int_{0}^{1} \frac{\Psi_{0}}{\Psi_{0}} \int_{0}^{1} \frac{\Psi_{0}}{\Psi_{0}} \\ \underbrace{\Psi_{0}}_{0} \int_{0}^{1} \frac{\Psi_{0}}{\Psi_{0}} \int_{0}^{1} \frac{\Psi_{0}}{\Psi_{0}} \int_{0}^{1} \frac{\Psi_{0}}{\Psi_{0}} \int_{0}^{1} \frac{\Psi_{0}}{\Psi_{0}} \int_{0}^{1} \frac{\Psi_{0}}{\Psi_{0}} \int_{0}^{1} \frac{\Psi_{0}}{\Psi_{0$$

1 1 1 1 1

$$\frac{(-1) k! l!}{(k+l+3)!}$$

其中 $\lambda_{b}, \lambda_{b}, \lambda_{b}, \lambda_{b}, \lambda_{b}$ 为三角形单元对应的局部面积坐
标. 于是
 $\int_{a}^{b} y^{l} \varphi_{00} = (x^{k} y^{l}, \varphi_{00}) = [1 + (-1)^{k}] \times \frac{1}{(k+l)(l+1)(k+l+3)} + [1 + (-1)^{k}](-1)^{l} \times \frac{k! l!}{(k+l+3)!}$
从 而 $\frac{1}{k! l!} (x^{k} y^{l}, \varphi_{00}) = [1 + (-1)^{k}] \times \frac{1}{(k+l)!(l+1)!(k+l+3)} + (-1)^{k} \times \frac{1}{(k+l+3)!}$
 $\frac{1}{(k+l+3)!} J.$
 $\cong u \in \pi_{5}, f = -\Delta u \in \pi_{3}, \oplus G \operatorname{reen} \Delta \operatorname{IZ}$

维 Taylor展式,有

$$a(u, \varphi_{00}) = (f, \varphi_{00}) = \sum_{0 \le k + \le 3} \frac{f_{00}^{k,l}}{k! l!} (x^{k} y^{l}, \varphi_{00}).$$

通过前面计算的结果, 可知

$$a(u, \Psi_{00}) = f_{00} + \frac{1}{6}f_{00}^{0.1} + \frac{1}{12}f_{00}^{0.2} + \frac{1}{12}f_{00}^{2.0} + \frac{1}{12}f_{00}^{2.0} + \frac{1}{46}f_{00}^{2.1} + \frac{1}{96}f_{00}^{0.3}.$$

类似的有

$$a(u, \Psi_{10}) = f_{10} - \frac{1}{6}f_{00}^{0.1} + \frac{1}{12}f_{00}^{0.2} + \frac{1}{12}f_{00}^{2.0} - \frac{1}{46}f_{00}^{2.1} - \frac{1}{96}f_{00}^{0.3}.$$

$$= f_{ij} + \frac{1}{12} d_{ij} + \frac{1}{6} d_{ij},$$

$$\Rightarrow u \in \pi_2, \ a(Eu, \varphi_{ij})$$

$$= \begin{cases} \frac{1}{6} f_{ij}^{0\,1} - \frac{1}{6} u_{ij}^{2\,2} + \frac{1}{40} f_{ij}^{2\,1} + \frac{1}{90} f_{ij}^{0\,3}, \quad i \text{ biggs}, \\ -\frac{1}{6} f_{ij}^{0\,1} - \frac{1}{6} u_{ij}^{2\,2} + \frac{1}{40} f_{ij}^{2\,3} - \frac{1}{90} f_{ij}^{0\,3}, \quad i \text{ biggs}, \end{cases}$$

$$(2)$$

此处, $Eu = u - u_i$, 由式 (2)知, 当 $u \in \pi_2$ 时, $a(Eu, \varphi_{ij}) \equiv 0$ 当 $u \in \pi_3$ 时, $f^{Q_1} = (-\Delta u)^{Q_1}$ 恒 为一常数. 所以

$$\left(-\frac{1}{6}f_{10}^{0,1}\right) \equiv 0, \ \forall u \in \pi_{3}.$$
 (3)

2 有限元空间中鱼鼓型线性元的计算

考虑如下 Possion(泊松方程)

$$\begin{cases}
-\Delta u = f(x, y), \quad (x, y) \in \Omega = (0, 1) \times (0, 1), \\
u \mid_{\Gamma} = 0
\end{cases}$$

其中
$$\Delta$$
是 Lap lace算符 $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.
我们定义有限元空间 V_h 如下:
 $V_h = span \{ \phi_{ij} : (i, j) \in T \}$,其中 $T = \{ e_{ij} : (i, j) \in Z \}$.显然 $V_h \subset H_0^1(\Omega)$.

那么方程 (4) 的弱解 u 定义为: 求 $u \in H_0^1(\Omega)$, 使得 $\forall v \in H_0^1(\Omega)$, 均有

$$a_{\Omega}(u, v) = (f, v)$$
⁽⁵⁾

其中

$$a_{\Omega}(u, v) = \iint u \cdot v \, dx \, dy,$$

(f, v) =
$$\iint v \, dx \, dy.$$

此时方程 (4) 在 V_h 中的有限元解 u_h 为: 求 u_h $\in V_h$, 使得 $\forall v \in V_h$, 均有

$$a_{\Omega}(u_h, v) = (f, v)$$

引进函数空间 $V_h = span \{ \varphi_j : i j = 1(1)N - 1 \}$. 其中

$$\Phi_{ij}(x, y) = \begin{cases}
\Phi_{00}(\frac{x - i\hbar}{h}, \frac{y - i\hbar}{h}), i \equiv 0 \pmod{2}, \\
\Phi_{10}(\frac{x - i\hbar + \hbar}{h}, \frac{y - i\hbar}{h}), i \equiv 1 \pmod{2},
\end{cases}$$

则容易验证

$$(1) \Psi_{ij} \in C_0^0(\Omega), \quad (2) \Psi_{ij}(i', j') = \delta_{i} \delta_{ji} \delta_{ji}$$

为了得到高精度的渐近展式,我们构造依结 点类型不同而分段光滑的结点函数 $g_k \in V_h$,这里 g_k 是被逼近函数 u的一个线性算子,并且具有如 下结构特点:

$$(g_k)_{ij} = \begin{cases} 0 & i \equiv 0 \pmod{2}, \\ \sum_{\substack{+\beta \equiv k}} \frac{b(\ ,\beta)}{! \ \beta!} u_{j}^{\beta}, & i \equiv 1 \pmod{2}, \end{cases}$$
$$g_k = \sum_k (g_k)_{ij} \varphi_{j}.$$

整体光滑函数 w_k 满足 - $\Delta w_k = \sum_{\substack{+\beta=k \\ j \in I}} \frac{b(\cdot, \beta)}{j!} u^{\beta}$. 记 $I_h u = \sum_{\substack{ij=1 \\ ij=1}}^{N} u(ih, jh) \varphi_{ij} g_k^h = \sum_{\substack{ij=1 \\ ij=1}}^{N-1} (g_k)_{ij} \varphi_{jj}$ $E_h u = u - I_h u, E_h^h u = E_h u - h^3 g_3^h E_h^h u = E_h^h u - h^2$

 $a(Eu, \Psi_{00}) + a(Eu, \Psi_{10}) = \frac{1}{6}f_{00}^{0.1} + \frac{h^2w_4}{6}E_{10}^3 = E_{10}^2 - h^5 g_{10}^5 + \frac{h^2w_4}{6}E_{10}^4 = E_{10}^3 - h^3 w_5.$ © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

(4)

由上节的推导知 $\forall u \in C^{6}(\Omega) \cap H^{1}_{0}(\Omega)$, 有 $a(E^{4}_{h}u, \varphi_{ij}) = O(h^{4}).$

3 收敛性分析的结论

定理 1 若 $f \in L^{2}(\Omega)$,则 Possion 方程 $\begin{cases}
-\Delta u = f, \quad (x, y) \in \Omega \\
u = 0, \quad (x, y) \in \partial\Omega
\end{cases}$ 的弱解 $u \in H^{1}_{0}(\Omega)$ 存 在且唯一,并有如下误差估计

 $|| u - u_h ||_s \leq Ch^{1-s} || u - u_I ||_1 (s = 0, 1).$

证明: s = 1时, 由双线性泛函 a(u, v) 的连续 性、强制性和正交性, 对 $\forall v_h \in V_h$, 有 $|| u - u_h ||_1^2 \leq Ca(u - u_h, u - u_h) = Ca(u - u_h, u - v_h) \leq C || u - u_h ||_1 || u - v_h ||_1$, 于是, 由 Cea引 理, 得 $|| u - u_h ||_1 || u - v_h ||_1 \leq C$ infl $|| u - v_h ||_1 \leq C || u - u_I ||_1$,

s = 0时, 构造辅助函数 w, 满足 - $\Delta w = u - u_h$, $w \mid_{\partial\Omega} = 0$ 则有正则性估计⁽⁸⁾: $||w||_2 \leq C ||u| - u_h ||_0$ 于是, 对 $\forall v \in H_0^1(\Omega)$, 有 $a(w, v) = (u - u_h, v)$. 特别地, 取 $v = u - u_h$, 则有 $||u - u_h||_0^2 = a(w, u - u_h) = a(w - w_I, u - u_h) \leq C ||w - w_I||_1 ||u - u_h||_1 \leq Ch ||w||_2 ||u - u_I||_1 \leq Ch ||u - u_h||_0 ||u - u_I||_1 \leq Ch ||u - u_h||_0 ||u - u_I||_1$, 近毕.

参考文献:

- [1] 沈建国,陈志杨,张 引,等.面向有限元分析的三角
 网格迭代优化 [J]. 计算机辅助设计与图形学学报, 2009(21):1315-1321.
- [2] 张晋红, 吴风林. 有限元法及其应用现状 [J]. 建材技 术与应用, 2007(4): 9-10
- [3] 陈传森, 黄云清. 有限元高精度理论 [M]. 长沙: 湖南 科技出版社, 1995
- [4]喻海元.基于几类基本三角形网格下的线性元与二次元的渐近展式和外推研究[D].湘潭:湘潭大学, 2006
- [5]傅凯新,黄云清,舒 适.数值计算方法[M].长沙:湖 南科学出版社,2002
- [6] 张述良,译.有限元与近似法 [M].北京:人民教育出 版社,1997
- [7] Zhang Zhim in, Naga Ahm ed Validation of the a posteriori error estimator besded on polynom in al preserving recovery for linear elements [J]. Internaternational Journal for Numerical Methods in Engineering 2004(61): 1860 - 1893.
- [8] Zhang Zhim in Polynom in al preserving gradient recovery and a posteriori estimate for bilinear slement on irregular quadrilatera b[J]. Internatemational Journal of Numerical Analysis and M odeling, 2004(1): 1-24.

(上接第 40页)

- [2] Texas Instruments Inc CC2520 datasheet [EB/OL]. h+ tp/ /: www. ti com / CC2520
- [3] 黄智伟. 全国大学生电子设计竞赛电路设计 [M]. 北京: 北京航空航天大学出版社, 2006
- [4]何娜,黄智伟.基于 CC2520的 ZigBee / EEE802
 15.4的收发器电路 [J].工业控制计算机,2009,22

(3): 96-97

- [5] 黄智伟,何 娜. 基于 MRF 24 J40的 EEE 802 15.4无 线收发电路设计 [J].现代电子技术,2008,21(11):36 - 38
- [6] 黄智伟. 单片无线收发集成电路原理与应用[M]. 北京: 人民邮电出版社, 2005.

48