文章编号:1673-0062(2009)03-0061-04

单斜态 TiO₂ 电子结构的第一性原理研究

赵玉宝1,秦 军1,吴兆锋1,张 娜1,韩 露2

(1. 南华大学 化学化工学院, 湖南 衡阳 421001; 2. 华南师范大学 化学与环境学院, 广东 广州 510006)

摘 要:基于密度泛函理论的平面波超软赝势方法,对锐钛矿相 TiO₂ 和单斜态 TiO₂ 的电子结构,能带、电子态密度进行了分析.结果表明:相对于锐钛矿相 TiO₂,单斜态 TiO₂ 的原子布居、Ti-O 键长及重叠布居数发生了变化;单斜态 TiO₂ 的禁带变宽,理 论预测其光吸收波长可发生蓝移. 关键词:密度泛函;单斜态二氧化钛;能带结构;电子结构;计算模拟 中图分类号:0643 文献标识码:A

First – principle Calculation of the Electronic Structure of TiO₂ (B)

ZHAO YU-bao¹, QIN Jun¹, WU Zhao-feng¹, ZHANG Na¹, HAN Lu²

(1. School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China; 2. School of Chemistry and Environment, South China Normal University, Guangzhou, Guangdong 510006, China)

Abstract: The density functional theory (DFT) and the plane wave pseudo potentials (PWPP) method were employed to investigate the band gap, density of states of anatase TiO_2 and monoclinic $TiO_2(B)$. It is shown that Ti - O bonds and their populations of TiO_2 (B) are polydispersed compared to anatase TiO_2 . The band gap of monoclinic $TiO_2(B)$ was wider than that of anatase TiO_2 , thus a blue shift is expected in the absorption spectrum of monoclinic $TiO_2(B)$.

Key words: DFT; monoclinic TiO₂; band structure; electronic structure; simulation

自 Fujishima 等^[1]发现受紫外光照的 TiO₂ 具 有光催化效应以来,以 TiO₂ 为代表的光催化材料 得到了广泛地研究.实验研究表明,在锐钛矿、金 红石、板钛矿及单斜态的四种晶型 TiO₂ 中,锐钛 矿型 TiO₂ 具有优异的光催化性能,单斜新结构 TiO₂(B)具有独特的电化学特性和光催化活性,

同时 TiO₂(B)还是甲苯催化氨氧化负载型钒氧化 物催化剂的优良载体^[2].本研究组对室温制备 TiO₂(B)于暗黑环境中催化降解有机物的活性评 价结果显示,TiO₂(B)对甲基橙-H₂O₂体系的催化 降解活性远高于其他晶型的 TiO₂^[3].

收稿日期:2009-06-22

基金项目:湖南省科技厅科研基金资助项目(07FJ4151;06FJ41404)

作者简介:赵玉宝(1974 -),男,安徽临泉人,南华大学化学化工学院副教授.主要研究方向:功能材料,环境保护.

为深入探究 TiO₂ 的构效关系,近年来对 TiO₂ 的理论模拟已引起了广泛关注. 1964 年密度泛函 理论(DFT)的建立,及在局域密度近似(LDA)条 件下导出著名的 Kohn – Sham(KS)方程,为 DFT 的平面波超软赝势等方法用于材料的结构模拟提 供了可能. Asahi 等采用全势线性级加平面波法 (FLAPW)计算了锐钛矿相 TiO₂ 的电子结构及光 学特性^[4];Fahmi 等则采用正交线性原子轨道法 (OLCAO)计算了三种晶型 TiO₂ 的电子结构和光 学性质^[5]. 尽管对锐钛矿和金红石相结构的 TiO₂ 基于第一原理的模拟计算已有较多的研究^[6-7], 但对单斜态 TiO₂(B)的模拟分析尚未见报道.

本文采用平面波超软赝势结合超晶胞模型的 方法,首先模拟锐钛矿相 TiO₂ 的电子结构以验证 算法的可靠性,进而计算分析单斜态 TiO₂(B)的 基态几何、能带结构,态密度,并与文献报道的实 验结果^[8-11]进行了对比.

1 计算模型与方法

采用 Materials Studio 自带的数据构建锐钛矿 相 TiO₂ 的正格矢晶胞,及基于文献实验数据^[12] 构建的单斜态 TiO₂(B)的1×1×1 晶胞模型如图 1 所示. 锐钛矿相 TiO₂ 属四方晶系,空间群为 *l*41/amd,每个晶胞包含四个 TiO₂ 单元,其中 O 的 位置只与一个内部坐标 u 有关,原子坐标分别为: Ti(0,0,0)和 O(0,0,u);TiO₂(B)属单斜晶系,空 间群为 *C*12/m1,其初始晶胞参数为:a = 1.217 87 nm; b = 0.374 12 nm;c = 0.652 49 nm; α = γ = 90°; β = 107.054°^[12].

图 1 锐钛矿相 TiO₂(a)及单斜态 TiO₂(b)的正格矢晶胞 Fig. 1 Primitive unite cells of anatase TiO₂(a) and monoclinic TiO₂(b)

 原理计算的方法^[13]. 研究中采用了 BFGS 算法, 对体系进行了多次优化,计算精度设为 2.0 × 10^{-5} ,用 GGA 中的 RPBE 方案对优化后的理论模 型进行单电子能量计算;进而对单电子能量计算 的结果进行能带、态密度(DOS)、以及部分态密度 (PDOS)分析,分析中采用了如下的局域轨道基 作为价轨道:O(2s,2p),Ti(3s,3p,3d,4s). 平面 截断能设为 380 eV,k – points 设置为 3 × 7 × 3,自 洽场的收敛标准设置为 5 × 10^{-7} eV/atom,所有计 算均在倒易空间中进行.

2 结果与讨论

2.1 结构优化

为验证本算法的精度,研究中首先先对锐钛 矿 TiO₂ 进行了计算. 锐钛矿 TiO₂ 存在两种不同 的 Ti – O 键长: d_{n-o}^m 和 d_{n-o}^m ,两个短键之间的角 度记作 20. 计算得到的晶格参数及部分键长列于 表 1. 为便于对比,表中还同时列出了文献报道的 采用 FLAPW 方法理论计算的结果及实验测量 值.本研究所得的理论计算结果与实验值^[14]偏差 均小于 0. 50 %,较文献中的理论计算结果^[4]精 度更高.

表 1 锐钛矿型 TiO₂ 结构参数与文献报道及实验值的比较 Table 1 Calculated structural parameters for anatase

TiO₂ compared to experimental results

Structural param	This work	Others ^[4]	Exp.
a/nm	0.3789	0.3692	0.3785
c/nm	0.9537	0.9417	0.9514
d ^{ep} _{Ti∼0} ∕nm	0. 199385	0.1948	0.1978
d ^{ap} _{Ti−0} ∕nm	0.193440	0.1893	0.1934
2 <i>0</i> /°	156.07	152.1	156.16

2.2 电子结构

基于优化结构所得到的晶胞参数,利用平面 波超软赝势计算得到锐钛矿型 TiO₂ 和单斜态 TiO₂(B)的能带结构和态密度图(取费米能级 E_f 为能量零点),结果示于图 2 和图 3.

对比分析图 2(a) 和图 3(a) 可以发现,锐钛 矿型 TiO₂ 费米能级附近的价带(VB)主要由 O 原 子 2p 轨道组成,其宽度为 5.77 eV;导带(CB)由 Ti 原子 3d 轨道组成,d 轨道分裂成 $t_{2g}(d_{xy}, d_{xa}, d_{ya})$ 和 $e_{g}(d_{x}^{2}, d_{x}^{2}, d_{y}^{2})$ 两部分,从而使得费米能附 近的导带分裂成上、下两部分:上部分导带(由 O_{2p} 和 Ti e_g 构成)宽度为3.15 eV,下部分导带(由 O_{2p} 和 Ti t_{2g} 组成)宽度为3.26 eV. Asahi 等^[4]根据 分子轨道理论,研究了纯锐钛矿相 TiO₂ 晶体的电 子状态.本研究的态密度图,与 Asahi 等^[4]的上述 分析一致.通过 Milliken 布居分析发现,锐钛矿型 TiO₂中O原子净电荷数均为-0.68 e,而Ti原子的净电荷数均为1.35 e;锐钛矿型TiO₂中两种Ti -0键长分别为0.193 440和0.199 385 nm,对应 的键布居数分别为0.73和0.23,这说明Ti-0 键呈现较强共价键特征.

Fig. 3 Part densities of state of anatase $TiO_2(a)$ and monoclinic $TiO_2(b)$

相对于较锐钛矿型 TiO₂,单斜态 TiO₂(B)费 米能级附近态密度有显著增大(见图 2).这是由 于单斜态 TiO₂(B)电子参量中的电子数(96.0) 较锐钛矿型 TiO₂电子数(48.0)多造成的.图 2 (b)中单斜态 TiO₂ 的能带结构显示,其价带顶位 于布里渊区的 Z 点;导带底位于布里渊区的 G 点,带隙为 2.875 eV,小于实验报道的 3.3 eV^[8], 属于间接带隙半导体(见表 2).基于第一原理理 论计算得到的带隙宽度比实验值偏小是普遍现 象,并不影响带隙变化趋势的分析结论正确性.这 是由于在局域密度泛函理论中,求解 Kohn – Sham 方程没有考虑体系激发态情况,广义梯度近似所 产生的较小带隙引起的,使得价带以上的能级位 置偏低,从而导致带隙宽度的理论值比实验值一 般小 30% ~50%.表2 中理论计算的带隙宽度表 明,TiO₂(B)的 E_g 比锐钛矿型 TiO₂ 的要大,即 TiO₂(B)的带隙较宽.由 λ_g /nm =1 024 eV/ E_g 容 易推知, E_g 值越大,对应的光吸收阈值 λ_g 越小, 吸收边将有蓝移现象,即 TiO₂(B)将较锐钛矿型 TiO₂ 的吸收带向短波方向移动.

从图 3(b)单斜态 TiO₂(B)的分态密度图,可 以分析影响费米能级附近能带变化的原因.单斜 态 TiO₂(B)价带由 O 原子主导,导带由 Ti 原子主 导:其导带由 Ti 原子的 3d 轨道上的电子构成,没 有分裂,导带中前4条分别是 Ti 的 3d 和 O 的 2p 轨道;价带主要是 σ 和 π 成键轨道,导带是反键 轨道,价带中能量最小的是 O 的 s 轨道,价带顶端 由 O 原子的 2p 轨道和 Ti 的 3d 轨道构成.这一结 果与杂化轨道理论对成键的方式预测完全一致. 对 TiO₂(B)的轨道布居分布计算结果表明,Ti 带 的正电荷与锐钛矿型 TiO₂ 相一致,而 O 带的负电 荷则在 – 0.68e 和 – 0.72e 之间,如表 3 所示.研 究中还利用赝势计算了 Ti 和 O 的价电子结构和 键长布局,八对不同键长 Ti – O 键的键布居数分 布于 0.14 到 0.55 之间,呈现出较强共价键特征.

Tab	le 2 Orbital e	nergy near the Fermi leve	and the theoretic	c and experimen	tal E_{p} results
晶胞模型	轨道	<i>E</i> /eV	理论 E _g /eV	实验 <i>E_g/</i> eV	。 半导体类型
T : 0	номо	-0.712 ~0.000	0.170	3.23	间接推购水 昆 任
110_2	LUMO	2.170 ~ 3.550	2.170		间按审原于守仲
$TiO_2(B)$ HOM	номо	-0.363~0.000	0.075	0.00	空校世略火日告
	LUMO	2 875 ~ 3 305	2.8/5	3.30	间接审原半导体

表 2 在费米能级附近的轨道能量及理论与实验 E_e值

表 3 TiO₂(B)的轨道布居数 Table 3 Population of orbital of TiO₂(B)

Species	Ion	s	p	d	Total	Charge(e)
0	1,5	1.85	4.75	0.00	6.60	-0.60
0	2,6	1.85	4.87	0.00	6.72	-0.72
0	3,7	1.85	4.84	0.00	6.68	-0.68
0	4,8	1.85	4.83	0.00	6.67	-0.67
Ti	1,3	2.24	6.25	2.23	10.65	1.35
Ti	2,4	2.26	6.26	2.21	10.67	1.33

3 结论

采用基于密度泛函理论的平面波超软赝势方法,计算了锐钛矿相 TiO₂ 和单斜态 TiO₂(B)结构 参数、能带、态密度.结果表明:与锐钛矿型 TiO₂ 相比,单斜态 TiO₂(B)结构中 Ti - O 键也呈现较 强共价键特征,但其对称性降低,Ti - O 键长及重 叠布居数也发生了变化;单斜态 TiO₂ 的禁带变 宽,理论预测光吸收波长可发生蓝移,计算结果与 已有的实验数据符合较好.

参考文献:

- Fujishima A. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238:37 -38.
- [2] Sanati M, Wallenberg L R, Andersson A, et al. Vanadia catalysts on anatase, rutile, and TiO₂(B) for the ammoxidation of toluene: an ESR and high - resolution electron microscopy characterization [J]. J Catal, 1991, 132(1): 128 - 144.
- [3]田晓宁,赵玉宝,秦 军.新结构 TiO₂(B)的常温合成 和表征[C]//第十四届全国催化学术会议论文集.南 京,2008:126-127.
- [4] Asahi R, Mannstadt W. Electronic and optical properties of anatase TiO₂[J]. Phys Rev B,2000,61(11):7459.
- [5] Fahmi A, Minot C, Silvi B. Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite[J]. Phys Rev B, 1995, 51 (19): 13023 -13032.
- [6] 郭玉宝,杨 儒. 金红石型纳米 TiO₂(110) 表面原子

结构和电子结构的理论研究[J].北京化工大学学报 (自然科学版),2004,31(5):64-68.

- [7]张 勇,唐超群,戴 君.锐钛矿 TiO₂ 及其掺 Fe 所导 致的红移现象研究: 赝势计算和紫外光谱实验[J]. 物理学报,2005,54(1):323-327.
- [8] Shieh D L, Ho C H, Lin J L. Study of preparation of mesoporous TiO₂ B nanofibers from mesoporous anatase TiO₂ and interaction between CH₃I and TiO₂ B
 [J]. Microporous and Mesoporous Materials, 2008, 109: 362 369.
- [9] Pavasupree S, Suzukil Y, Yoshikawa S, et al. Synthesis of titanate, TiO₂(B), and anatase TiO₂ nanofibers from natural rutile sand [J]. Journal of Solid State Chemistry., 2005, 178:3110-3116.
- [10] Armstrong G, Armstrong A, Canales J. Nanotubes with the TiO₂ - B structure [J]. Chem Commun, 2005, 5 (19):2454 - 2456.
- [11] Armstrong A R, Armstrong G, Canales J, et al. TiO₂ B Nanowires [J]. Angew Chem Int Ed, 2004, 43 (17): 2286 - 2288.
- Feist T P, Davies P K. The soft chemical synthesis of TiO₂(B) from layered titanates [J]. Journal of Solid State Chemistry, 1992, 101:275 - 295.
- [13] Segall M D, Lindan P J D, Probert M J, et al. First principles simulation: ideas, illustrations and the CASTEP code [J]. J Phys Condens Matter, 2002, 14: 2717.
- [14] Howard C J, Sabine T M, Dickson F. Structural and thermal parameters for rutile and anatase [J]. Acta Crystallogr B, 1991, 47:462.