文章编号:1673-0062(2009)03-0053-05

氮氧双自由基的合成与晶体结构

王小峰,廖碧波

(南华大学化学化工学院,湖南 衡阳 421001)

摘 要:成功合成了一个新的稳定的有机磁体化合物氮氧双自由基 DNNPhDMe,对 其进行了红外、顺磁共振及 X ~ 射线单晶结构表征.该化合物结晶于单斜晶系, $P2_1/c$ 空间群,其晶体学参数为:Mr = 420.55,a = 0.6137(4) nm,b = 1.7662(12) nm,c = 1.0480(7) nm, $\beta = 93.581(12)^\circ$,V = 1.1337(13) nm³,Z = 2, $D_c = 1.232$ g/cm³, $\mu = 0.523$ mm⁻¹,F(000) = 456. 化合物的结构由直接法解出,用基于 F^2 的全矩阵最小 二乘法校正.最终可靠因子为 $R_1 = 0.0588$, $wR_2 = 0.1324$.该化合物通过氢键形成三 维超分子结构. 关键词:氢氧双自由基;合成;晶体结构 中图分类号:0627 文献标识码:A

Synthesis and Crystal Structure of a Novel Nitronyl Nitroxide Diradical

WANG Xiao-feng, LIAO Bi-bo

(School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China)

Abstract: A novel nitronyl nitroxide diradical has been synthesized and characterized by FTIR, ESR and X – ray single crystal diffraction. The crystal belongs to Monoclinic, space group P2₁/c with Mr = 420.55, a = 0.6137(4) nm, b = 1.7662(12) nm, c = 1.0480 (7) nm, $\beta = 93.581(12)^{\circ}$, V = 1.1337(13) nm³, Z = 2, $D_c = 1.232$ g/cm³, $\mu = 0.523$ mm⁻¹, F(000) = 456. The structure was solved by direct method and refined by block – matrix least – squares techniques to the final $R_1 = 0.0588$ and $wR_2 = 0.1324$. Through hydrogen bond, compound formed three dimension supra – molecule network. Key words: diradical; synthesis; crystal structure

分子基磁性材料的研究是近二十年来材料科 学中的热点领域之一^[1-4].分子磁体是指采用制 备分子化合物的常规方法合成具有铁磁或亚铁磁 性的化合物,使其在某临界温度(critical temperature: T_c)下具有自发的磁化作用.这种方法使以往 仅以金属或离子晶格组成的磁性材料有可能以分 子聚合体的方式,在通常条件下的溶液中合成.分 子磁体具有多种多样的分子结合方式,并且很容

收稿日期:2009-03-22

基金项目:南华大学启动基金资助项目(5-03-XJQ-03.0392005)

作者简介:王小峰(1969~),男,湖南衡阳人,南华大学化学化工学院讲师,博士.主要研究方向:功能配合物.

易与其它分子功能材料一起进行分子组装.其组 成可以是纯有机分子,也可以是金属离子与有机 配体形成的配合物.与传统的磁性材料相比,分子 磁体具有其无法比拟的优越性:同时具有可溶、绝 缘、比重轻、可塑性强、信息存储量高、磁耗比小、 易成型等性质,而且其磁性质可通过金属离子和 有机配体的选择及合成方法的改进而达到完 善^[5].非常适于做航天材料、微波吸收材料、光磁 开关材料、电磁屏蔽材料、磁记录材料和生物兼容 材料.

目前设计分子基磁体的方法很多,根据分子 中自旋载体种类的不同,可分为三类^[6]:

1) 有机方法. 这种方法的自旋载体是有机自由基,它的磁性全部来自 2P 轨道的成单电子. 如结构和磁性完全表征的有机磁体: NNpPhNO₂(2 – (4' – 硝基苯基) – 4,4,5,5 – 四甲基咪唑啉 – 3 – 氧化 – 1 – 氧基自由基),其 T_c = 0.6 K^[7].

2) 无机方法. 这种方法的自旋载体全部是金属 离子. 金属离子通过有机配体桥联形成一维或多维 结构. 如草酰胺桥联的 Cu(II) – Mn(II) 交替链状配 合物:MnCu(pbaOH)(H_2O_2)₃(pbaOH = 2 – 羟基 – 1,3 – 丙二胺二草酸阴离子),其 *Tc* = 30 K^[8].

3) 金属 - 自由基方法. 自旋载体是金属离子 和有机自由基,配合物分子中同时具有这两种自 旋载体. 如氦氧自由基桥联的一维链状配合物 Mn (hfac)₂(NNR)(hfac = 六氟乙酰丙酮,NNR = 2 -R-4,4,5,5 - 四甲基咪唑啉 - 3 - 氧化 - 1 - 氧 基自由基),当 R 为异丙基时,*Tc* = 7.61 K^[9].

目前被广泛使用的有机自由基是稳定氮氧自 由基: Ullman 自由基 NN (nitronyl nitroxide)和 TEMPO,如图1所示.其R基团可以通过自身的 电子效应与立体效应,调谐金属 - 自由基之间的 偶合,且R基团易化学修饰引入其它配位原子, 从而获得高维结构.其中,NN类氮氧自由基具有 共轭体系构型.由于共轭体系的存在,使得二个氧 共享一个成单电子,可以传递金属自由基间的相 互作用,使得远程磁偶合成为可能,因此 NN 类自 由基在分子基磁性材料的合成中占有更重要的位 置并得到广泛应用.

氮氧自由基最初被用作生命科学研究中的自 旋示踪剂以阐明细胞膜的结构和功能.20世纪70 年代,报道了一些氮氧自由基的铁磁行为^[10],从 此,这类化合物受到广泛关注.

图 1 稳定氮氧自由基 Fig.1 Stable organic radical

1 实验部分

1.1 实验试剂与仪器

2-硝基丙烷, A. R;对二甲苯, A. R;六次甲 基四胺, A. R;甲醛, A. R;二氯甲烷, A. R;氯仿, A. R;苯, A. R;无水甲醇, A. R;无水乙醇, A. R;漱 醋酸, A. R;高碘酸钠, A. R;硫酸镁 A. R;石油醚, A. R(b. p. :90 – 120 ℃).

Carlo Erballo 型元素分析仪, Nicolet 7199B 型 Fourier 变换红外光谱仪, Thermo – Nicolet AVA-TAR FT – IR 360 型 Fourier 变换红外光谱仪, Shinadzu UV – 240 型紫外可见分光光度计, Bruker SMART 1000 CCD X – 射线单晶衍射仪.

1.2 实验步骤

2,5-二甲基-二甲醛的合成

1)2,5-二氯甲基-对二甲苯

将 106 g(1 mol)对二甲苯、520 mL 浓盐酸和 212 g 35% (2.6 mol)的甲醛加入到 1 000 mL 三 颈瓶中,加热到 65 ℃,通入 HCl 气体,反应 15 h 后过滤,分离出白色固体.再加入 212 g 35% (2.6 mol)的甲醛到母液中,于 65 ℃ 通入 HCl 气 体,继续反应 15 h,过滤.再重复一次上述步骤.混 合三次所得产品,用石油醚重结晶,得产物 108 g, m.p. 132 - 134 ℃,文献值 134 ℃.

2)2,5-二甲基-对苯二甲醛

把 15 g 2,5 - 二氯甲基 - 对二甲苯和 40 g 六 次甲基四胺分别加入到 200 mL 氯仿中,85 ℃下 回流 1 h,有白色晶体析出,抽滤,氯仿洗涤、干燥. 所得晶状物在 100 mL 的 1:1(体积比)冰醋酸 -水混合溶剂中回流 4 h,冷却后析出白色固体,抽 滤、蒸溜水洗涤、干燥.氯仿重结晶,得产物 7 g, m. p. 101 - 102 ℃,文献值 101 ℃.

2 双自由基 DNNPhDMe 的合成

将1.09g2,5-二甲基-对苯二甲醛和1.48g

2,3 - 二甲基 - 2,3 - 二羟胺基丁烷加入 60 mL 无 水苯中,磁力搅拌下 80 ℃回流 12 h,过滤.固体产 物加入到 100 mL CH₂Cl₂ 中,在冰水浴、强烈磁力 搅拌下,加入过量的 1 g NaIO₄ 的水溶液,15 min 后停止反应.分出有机相,蒸馏水洗涤(3×30 mL), 有机相以无水硫酸镁干燥 12 h.过滤,旋转蒸发至 近干,用体积比为 1:1 的石油醚/二氯甲烷重结 晶,得紫红色晶体.

图 2 双自由基的合成路线 Fig. 2 Scheme of synthesis method of diradical

- 3 结果与讨论
- 3.1 双自由基 DNNPhDMe 的一般表征

双自由基 DNNPhDMe(C₂₂ H₃₄ N₄O₄)的元素 分析的实验值(%):C,63.43;H,8.36;N,13.67. 理论值(%):C,63.13;H,8.19;N,13.39.IR 谱 (见图3)的N-O吸收出现在1371 cm⁻¹.其甲醇 溶液的电子光谱中,263 nm 附近的吸收带归属为 苯环的 $\pi \to \pi^*$ 跃迁.357 nm 处的吸收峰指派为自 由基 ONCNO 共轭基团的 $\pi \to \pi^*$ 跃迁,560 nm 处 的吸收峰,可指派为其的 $n \to \pi^*$ 跃迁.

3.2 DNNPhDMe 的晶体结构

3.2.1 晶体的培养

将双自由基 NN₂PhMe₂ 溶于体积比为 1:1 的 CH₃OH/CH₃CN 混合溶剂中,于-4 ℃下缓慢 挥发溶剂,3 个月后得到适合 X – 射线结构测定 的深红色晶体.

3.2.2 晶体结构的测定

选取大小为 0.25 mm × 0.20 mm × 0.10 mm 的晶体于 273(2) K 下,用 Bruker SMART CCD X - ray 衍射仪,采用石墨单色化的 Mo/Kα(λ = 0.071 073 nm)射线,以 ω - 2 θ 扫描方式在 2.26° $\leq \theta \leq 25.03$ °范围内,共收集 4 571 个衍射点,其中 独立衍射点 2 005 个[(I > 2 σ (I)](R_{int} = 0.057 1). 晶体结构由直接法解出,用基于 F^2 的全矩阵最小 二乘法校正. 氢原子为平衡原子,理论加氢.详细 的晶体数据和测定数据列于表 1,其选择的键长 和键角列于表 2.

Compound	DNNPhDMe
Empirical formula	C. H. N.O.
Emphical Iolinua	420.55
	420:55
Temperature/ K	275(2)
Wavelength/nm	0.0/10/3
Crystalsystem	Monoclinic
Space group	$P2_1/c$
Unit cell dimensions	
a/nm	0.6137(4)
b/nm	1.766 2(12)
c/nm	1.048 0(7)
$\beta^{\prime \circ}$	9.3581(12)
Volume/nm ³	1.1337(13)
Z	2
Density (calculated)/($g \cdot cm^{-3}$)	1.232
Absorption coefficient/mm ⁻¹	0. 523
F(000)	456
Crystal size/mm ³	$0.25 \times 0.20 \times 0.10$
θ range for data collection/°	2.26-25.03
Reflection collected	4571
Independent reflections	2005 [$R_{\rm int} = 0.0571$]
Data / restraints/parameters	2005/0/143
Goodness – of – fit on F^2	0.994
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0588$, $wR_2 = 0.1324$
R indices (all data)	$R_1 = 0.1290, wR_2 = 0.1588$
Largest diff. peak and hole/e nm ⁻³	309 and - 297

表 1 化合物的晶体数据和测定数据参数 Table 1 Crystal data and structure refinements for DNNPhDMe

表2 化合物的主要键长与键角

Table 2 Selected bond lengths (mil) and angles () of Division	Table 2	Selected	bond lengths	(nm) and	angles	(°)	of DNNPhD	M
---	---------	----------	--------------	----------	--------	-----	-----------	---

DNNPhDMe	lengths/nm	angles/°	DNNPhDMe	lengths/nm	angles/°
O(1) - N(2)	0.1269(3)		N(1) - C(9)	0.1508(3)	
O(2) - N(1)	0.1271(3)		N(2) - C(5)	0.1337(3)	
N(1) - C(5)	0.1339(4)		N(2) - C(6)	0.1503(4)	
O(2) - N(1) - C(9)		121.5(2)	N(2) - C(5) - C(3)		126.4(3)
C(5) - N(1) - C(9)		112.6(2)	N(1) - C(5) - C(3)		124.5(2)
O(1) - N(2) - C(5)		125.9(2)	N(2) - C(6) - C(7)		106.3(2)
O(1) - N(2) - C(6)		121.2(2)	N(2) - C(6) - C(8)		109.5(2)
C(5) - N(2) - C(6)		112.7(2)	N(2) - C(6) - C(9)		101.4(2)
N(2) - C(5) - N(1)		109.1(2)			

注:Symmetry transformations used to generate equivalent atoms:#1 -x, -y+1, -z+1

第23卷第3期

3.2.3 DNNPhDMe 的结构描述

双自由基的分子结构如图 4 所示.两个甲基与苯环基本上共面,而两个 ONCNO 构成的平面与苯环的二面角相同,均约为 90°.四个 N-O 键的键长基本相等,分别为 0.126 9(3)和0.127 1(3)nm.该

化合物通过来自 N-O 基团上的 O 与邻近分子的 咪唑啉上的甲基基团上 C 原子形成C-H···O氢 键,正是通过这些丰富的氢键,化合物最终构筑成 为三维超分子结构.

图 4 化合物的分子结构图 Fig. 4 ORTEP drawing of DNNPhDMe

参考文献:

- Kahn O. Molecular magnetism [M]. Weinheim: VCH, 1993.
- [2] Miller J S, Epstein A J. Organic and metalorganic molecular magnetic materials; designer magnets [J]. Angew. Chem. Int. Ed. Engl., 1994, 33;385-418.
- [3] Kahn O. Magnetism: a supramolecular function [M]. NATO ASI Series C484; Dordrecht: Kluwer Academic Publishers, 1996.
- [4] Coronado E, Delhaes P, Gatteschi D, et al. Molecular magnetism:from molecular assemblies to devices [M]. NATO ASI Series E321; Dordrecht: Kluwer Academic Publishers, 1996.
- [5] Miller J S, Epstein A J. Designer magnets [J]. C&EN, 1995(10):30-41.
- [6] Kahn O. Chemistry and physics of supramolecular mag-

netic materials [J]. Acc. Chem. Res., 2000, 33:647 - 657.

- [7] Kinoshita M. Ferromagnetism of organic radical crystals
 [J]. Jpn. J. Appl. Phys., 1994, 33:5718 5733.
- [8] Pei Y, Verdaguer M, Kahn O, et al. Ferromagnetic transition in a bimetallic molecular system [J]. J. Am. Chem. Soc., 1986, 108:7428 - 7430.
- [9] Caneschi A, Gatteschi D, Renard J P, et al. Magnetic phase transition and low - temperature EPR spectra of a one - dimensional ferrimagnet formed by manganese(II) and a nitronyl nitroxide [J]. Inorg. Chem., 1989, 28: 1976-1980.
- [10] Veyret C, Blaise A. Magnetisme dans certains composes organiques: les radicaux libres stables nitroxydes [J].
 Mol. Phys., 1973, 25:873 - 882.