文章编号:1673-0062(2009)03-0001-04

基于 Geant4 的 NaI(Tl)闪烁谱仪模拟

程品晶,凌 球*

(南华大学 核科学技术学院,湖南 衡阳 421001)

摘 要:Geant4 是一套用于精确模拟粒子在介质中输运过程的蒙特卡罗数值计算软件工具包.本工作基于该工具包,通过对一个 NaI(Tl)闪烁谱仪进行实例模拟计算, 得到了与实验测量所得能谱具有相同特征的结果,表明 Geant4 不仅能够用于高能物 理模拟,同时也可以应用于核技术领域的其它方面. 关键词:Geant4 工具包;蒙特卡罗方法;NaI(Tl)闪烁谱仪;核辐射探测 中图分类号:TL822 文献标识码:B

Simulation of NaI(Tl) Scintillation Spectrometer with Geant4 Toolkit

CHENG Pin-jing, LING Qiu*

(School of Nuclear Science and Technology, University of South China, Hengyang, Hunan 421001, China)

Abstract: Geant4 is a toolkit for accurately simulating the passage of particles through matter. A simulation of NaI(Tl) scintillation spectrometer has been made with this toolkit and the calculated results of energy spectrum have the same characteristic with the spectrum measured in experiments. The work shows that Geant4 toolkit is not only suitable for high energy physical simulation, but also for other applications in nuclear technology field. Key words: Geant4 toolkit; Monte Carlo method; NaI(Tl) scintillation spectrometer; detection of radiation

0 引言

Geant4 是欧洲核子中心(CERN) 主导开发并 用于高能物理的蒙特卡罗数值模拟计算软件工具 包,主要计算粒子在介质中的精确输运过程. Geant4 能够模拟电磁相互作用,可以分别模拟电 子、光子和电子 - 光子耦合输运,可根据使用目的 不同自由选择任何一种物理机制.除此之外, Geant4 还提供了一个低能数据库,这个数据库包 括评价光子数据库 EPDL97、评价电子数据库 EE-DL 及评价原子数据库 EADL,分别提供了原子序 数从1到100 元素的各种电磁反应的截面数据,

收稿日期:2009-04-22

基金项目:衡阳市科技局基金资助项目(2008KJ006)

作者简介:程品晶(1976-),男,江西婺源人,南华大学核科学技术学院讲师,博士研究生.主要研究方向:核技术及应用. * 通讯作者.

比如光电效应、韧致辐射以及原子退激等能谱数 据^[1].作为一个开放式计算软件工具包,Geant4 的源码完全公开,有利于开发人员根据实际需求 对 Geant4 程序进行修改、扩展和完善.Geant4 的 应用领域主要包括核物理、粒子加速器、航空航 天、医学物理等方面的数值仿真技术^[2].

NaI(TI)闪烁谱仪是核辐射探测中应用较广 泛的探测器,主要用于能谱测量、强度测量、时间 测量,目前 NaI(TI)单晶体 γ 谱仪在工业、医学等 应用领域,以及在某些核物理实验中仍有相当广 泛的用途^[3].对γ射线的探测器来说,放射源在 某个方向发射γ光子,在光子到达 NaI 晶体后,发 生光电效应或康普顿效应,产生次级电子被吸收 或逃逸等,这些都是随机的.因此可以用计算机从 数学上模拟这些随机事件,以便确定某些物理量, 如光子响应函数、本征效率、总探测效率和全能峰 效率等.

1 材料与方法

1.1 Na(TI)闪烁谱仪

本文模拟的 NaI 晶体为圆柱体(Φ7.5 cm × 7.5 cm),基质为 NaI,激活剂为 Tl,NaI 晶体的密 度为 3.67 g/cm³;在晶体的周围,分别裹有反射 层、密封层、保护罩等外围物质,光学玻璃一面与 探测器光电倍增管耦合,在光学玻璃与 NaI 晶体 之间则采用硅油做光学耦合剂;NaI 晶体四周为 干燥的氧化镁主要起反射层的作用;NaI 晶体外 表是金属外壳,外壳与氧化镁之间用海绵垫衬.在 模拟中,只考虑采用铅外壳为保护罩、硅油为光学 耦合剂、氧化镁为反射层的情况,再附加海绵垫衬 以及透明光学玻璃,以 NaI 晶体的能量沉积作为 整个晶体内的平均能量沉积.

1.2 计算模型与物理过程设置

为了对比分析不同计算模型对计算结果的影响,在计算时选择两种模型,其中 Model 1 为裸晶体,如图 1 所示. Model 2 包括包壳、反射层等,其源与探头的几何关系同图 1. 放射源为各向同性点源,模拟时的物理过程设置如表 1 所示.

1.3 记录与统计

能量为 E₀ 的光子从源发出,人射到探测器上, 并在探测器内发生各种作用沉积能量.在用 Geant4 模拟时,沉积能量的计算是通过把每个源粒子事件 在探测器中所发生作用的每一步能量沉积累积后 得到的.考虑到谱仪系统的分辨率,多道记录能量 为沉积能量的高斯展宽,其谱仪半宽度 FWHM 和 射线能量 E_d 间的关系可以写成如下形式:

$$FWHM(E_d) = a + b \sqrt{E_d + cE_d^2}$$

式中,*a*,*b*,*c* 是分辨刻度系数,这里取 *a* = 0.001,*b* = 0.050 86,*c* = 0.030 486. 记录能量.

 $E' = E_d + \sigma \cdot x$. 其中,

 $\sigma = FWNM/2 \sqrt{2\ln 2} = FWNM/2.355, x$ 由标准正态分布抽样得到.

图1 裸晶体情况时的计算模型

表1 模拟时的物理过程设置

Table 1	Settings of physics process for simulation				
粒子	物理过程				
W. 7.	光电效应,次级光子和电子的产生截断能				
201	量均设为0.25 keV;康普顿散射;对效应.				
电子	多次散射;电离,次级光子和电子的产生截				
	断能量均设为0.1 keV; 轫致辐射.				
正电子	多次散射;电离;轫致辐射;正电子湮没.				

为了计算谱仪的探测效率,模拟时还需要记录进入探测器中的 y 光子总数 N'及被探测器记录的光子总数,即全谱下的总计数 n. 利用全能峰下的计数 n_p 与全谱下的总计数 n 之比可计算出峰总比 R^[4].

2 计算结果与讨论

2.1 探测效率与峰总比

分别对¹³⁷Cs 各向同性点放射源距探测器晶 体前表面 10 cm 和 30 cm 两种情况进行了模拟, 计算 10⁷ 个粒子,所得结果见表 2.

可以看出探测器离源距离增加时,本征探测 效率是增加,源峰探测效率减小,其主要原因是距 离增加时γ射线进入晶体的角度更小,使得射线 穿过晶体的平均厚度有所增加,因此本征探测效 率有所增加,但距离增加会使探测的几何因子ω = N'/N显著减小,因此源峰效率减小.模型1和 模型2对探测效率的影响情况是,模型2的探测 效率要比模型1略高,主要是在模型2条件下,包 壳及反射层等周围材料的散射及干扰辐射如特征 X射线或轫致辐射,会对低于全能峰的能区有贡 献,从而使探测器的本征探测效率有所增加.人射 线受包壳及反射层等材料的阻挡作用后,对全能 峰的贡献减小,同时其作用后产生的散射线、特征 X射线或轫致辐射对全能峰计数的贡献是很小 的,因此裸晶体的源峰探测效率要比有包壳及反 射层时略高.

表 2 探测效率与峰总比的计算结果 Table 2 Results of detection efficiency and photofraction

	模型1(裸晶体)		模型2	
	d = 10 cm	d = 30 cm	d = 10 cm	d = 30 cm
源粒子数(N)	10 000 000	10 000 000	10 000 000	10 000 000
进入探测器的粒子数(N')	301 470	38 269	281 409	35 476
全谱计数(n)	186 016	28 776	184 246	27 731
全能峰下的计数 (n_p)	104 895	16 470	93 419	14 333
本征探测效率 ε_{in}	61.7%	75.2%	65.5%	78.2%
源峰探测效率 ε_{sp}	1.05%	0.16%	0.93%	0. 14%
峰总比(R)	0. 564	0. 572	0. 507	0. 517

2.2 能谱

图 2 是模拟¹³⁷Cs 源点源 662 keV 光子入射探 测器的能谱模拟结果. 最右边的峰 A 是全能峰 (662 keV),平台状曲线 B 是康普顿散射效应的 贡献,对于非裸晶体模型(Model 2),还有一个峰 C,它是特征 X 射线峰,主要是由 γ 射线与周围物 质的原子发生光电效应后,在屏蔽层铅中作用引 起铅的88 keV的X射线进入晶体后被记录.图中 没有看到反散射峰,是因为这里模拟的探测器仅 包括晶体及其包壳和反射层部分,没有把光电倍 增管结构部分考虑进来,并且这里的包壳和反射 层都设得很薄.另外从图中可发现,在低能端,非 裸晶体模型(Model 2)的谱计数值高于裸晶体模 型(Model 1),这是由于 γ 射线与周围物质发生作 用后,产生的低能散射线进入晶体并被记录而引 起的. 图 3 是模拟²⁴ Na 源点源发射 2.76 MeV 和 1.38 MeV 两种能量的光子入射探测器的能谱模 拟结果,图中最右边的峰 A 是 2.76 MeV y 射线 在 NaI 晶体中产生的全能峰. 能量为 2.76 MeV 的 γ射线与晶体作用产生电子对后,当正电子湮没 时产生两个能量为 0.511 MeV 的湮没光子.其中 一个光子逃逸出晶体时,晶体记录的能量比全能 峰少0.511 MeV,形成单逃逸峰 B,若两个湮没光 子全部逃逸,则形成双逃逸峰 C. 峰 D 是对应于 1.38 MeV γ 射线的全能峰. 峰 E 是 2.76 MeV γ 射线在晶体周围材料中产电子对效应后,其中有 一个湮没光子进入晶体被记录而形成. 峰 F 同样 是特征 X 射线峰. 图 2 和图 3 均反映了源离探测

器距离增加时,谱计数会减小的特点.

MCNP 也是一种被广泛应用的蒙特卡罗计算

程序,图 4 给出的是分别用 Geant4 和 MCNP^[5] 对²⁴ Na 源点源的模拟结果对比.可以看出两种程 序的模拟结果是一致的,这说明这里用 Geant4 模 拟所建模型及所考虑的物理过程是合理的.

3 总结

对于大部分 γ 射线的测量中,既要测量 γ 射 线的强度,又要测量 γ 射线的能量,NaI(Tl)单晶 γ 谱仪是比较常用的一种^[6].以上只是通过实际 例子说明 Geant4 在核物理实验中的应用,它功能 强大而且是完全公开源码的,用 Geant4 进行核技 术领域的蒙特卡罗计算的优点是灵活,程序的运 行完全由用户控制,可以从程序运行中获取所需 的任何信息,可以根据实际需要更改、扩充 Geant4 程序.随着 Geant4 的不断发展和完善,它将可以 更好地成为核技术领域蒙特卡罗模拟计算的利 器.

参考文献:

- [1] 曾 志,李君利,程建平,等. Geant4 在核技术领域的 应用[J]. 同位素,2005,18(1/2):55-58.
- [2] Agostinelli S. Geant4—a simulation toolkit [J]. Nuclear Instruments and Methods in Physics Research A, 2003, 506:250-303.
- [3] 复旦大学,清华大学,北京大学.原子核物理实验方 法[M].北京:原子能出版社,1997.
- [4] 郭春营,罗永锋,林源根. NaI(TI)闪烁谱仪峰总比的 蒙特卡罗计算[J]. 核电子学与探测技术,2002,22 (5):453-455.
- [5] Judith F, Briesmeister. MCNPTM A General Monte Carlo N - Particle transport code[R]. Version 4c LA -13709 - M - Manual. Los Alamos National Laboratory, 2000.
- [6] 方晓明,李欣年.碘化钠探测器和高纯锗探测器γ能 谱仪性能比较[J].上海大学学报(自然科学版), 2004,10(4):389-392.