党春晓,刘鹏飞,王鼎,郝迎新,刘金星,于潇.基于生物信息学分析库欣综合征核心基因与互作miRNA.[J].中南医学科学杂志.,2023,(1):15-18.
基于生物信息学分析库欣综合征核心基因与互作miRNA
Identification of core genes and interacting miRNA of Cushing's syndrome based on bioinformatics
投稿时间:2022-05-30  修订日期:2022-11-15
DOI:10.15972/j.cnki.43-1509/r.2023.01.004
中文关键词:  库欣综合征  生物信息学  核心基因  miRNA [
英文关键词:Cushing's syndrome  bioinformatics  core genes  miRNA
基金项目:国家自然科学基金(82104917);山东省自然科学基金(ZR2021MH079;ZR2019PH053)
作者单位E-mail
党春晓 山东中医药大学,山东济南 250014 e-mail为2467088738@qq.com,e-mail为xiao675364548@163.com 
刘鹏飞 山东中医药大学,山东济南 250014  
王鼎 山东中医药大学,山东济南 250014  
郝迎新 安丘市中医院针灸科,山东潍坊 262100  
刘金星 山东中医药大学,山东济南 250014  
于潇 山东中医药大学附属医院妇科,山东济南 250014 e-mail为2467088738@qq.com,e-mail为xiao675364548@163.com 
摘要点击次数: 156
全文下载次数: 123
中文摘要:
      目的利用生物信息学筛选库欣综合征(CS)的核心基因及通路,并预测其相互作用的微小核糖核酸(miRNA)及小分子药物。 方法从GEO数据库下载CS基因芯片数据集并筛选出差异表达基因(DEG),随后对差异基因进行功能富集分析、蛋白互作分析、核心基因筛选,预测互作miRNA及小分子药物并进行验证。 结果共筛选出10个核心基因并预测出479个互作miRNA,相关通路集中在PI3K-Akt、cAMP、CS及MAPK信号通路等,奥那司匹、拉帕替尼是较为显著的小分子药物。 结论利用生物信息学方法筛选出参与CS发生发展的前5条信号通路、10个核心基因及479个互作miRNA,并预测出奥那司匹、拉帕替尼等小分子药物。
英文摘要:
      AimBioinformatics was used to reveal the core genes and pathways of Cushing's syndrome (CS), and predict the miRNA and small molecule drugs that may interact with it. MethodsThe microarray data set was downloaded from the GEO database and differentially expressed genes (DEG) were screened. Then, functional enrichment analysis, protein interaction analysis and core gene screening were performed on the differentially expressed genes, and interaction miRNA and small molecule drugs were predicted and verified. ResultsA total of 10 core genes were screened and 479 interaction miRNA were predicted, and the related pathways were concentrated in the PI3K-Akt, cAMP, CS and MAPK signaling pathway, etc. Onasipine and lapatinib were relatively significant small molecule drugs. ConclusionThe top 5 signal pathways, 10 core genes and 479 interaction miRNA involved in the development of CS were screened by bioinformatics methods, and small molecule drugs such as Onasipine and lapatinib were predicted.
查看全文  查看/发表评论  下载PDF阅读器
关闭
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=4DD8FF9FD26A78386744310646DA642BA4E6754D17E605EE20259B34E239B1DCD19F981A83EE8C26B5794DFDB3138DEBEBBEF818C4F7214FDF98D9FBD3DEE60EA5914DEF2A072EE3328736EAF63365D244228430AFADC08F1401BCCE2EE2DF92FAB21462CDA84953&pcid=A9DB1C13C87CE289EA38239A9433C9DC&cid=BB33F1C95224820A&jid=6A20DF2A798996E24F064D5ECF83A153&yid=BA1E75DF0B7E0EB2&aid=B82D0CD8A3C3D1DB21F94BBFB6544632&vid=&iid=CA4FD0336C81A37A&sid=23CCDDCD68FFCC2F&eid=13553B2D12F347E8&fileno=20230104&flag=1&is_more=0">