DOI:10. 15972/j. cnki. 43-1509/r. 2020. 05. 027

小专论。

核因子 E2 相关因子 2 在糖尿病肾病中的研究进展

Advances in the study of nuclear factor erythroid 2-related factor 2 in diabetic nephropathy

沈 倩¹,王 利²,赵 鼎^{3*}

SHEN Qian¹, WANG Li², ZHAO Ding³*

(1. 盐城师范学院药学院, 江苏 盐城 224002; 2. 上海中医药大学附属普陀医院肾内科, 上海 200062; 3. 南京中医药大学附属盐城市中医院, 江苏 盐城 224000)

摘 要: 随着我国糖尿病的高发病率,糖尿病肾病(DN)已成为危害公众健康的重要原因。DN发病机制复杂,目前研究的氧化应激、炎症、纤维化、糖脂代谢紊乱、线粒体功能及遗传因素等均与 DN的发生发展有关,而对DN的治疗尚缺乏有效药物。转录因子核因子 E2 相关因子 2(Nrf2)是细胞内重要的抗氧化分子,其介导的多种信号通路参与 DN的进展,本文综述了 Nrf2 在 DN 发病机制中的研究及激活 Nrf2 途径的相关中药在 DN 中的治疗,以期为防治 DN 提供新的理论依据和方向。

关键词: 核因子 E2 相关因子 2; 糖尿病肾病; 发病机制; 治疗

Key words: Nuclear factor erythroid 2-related factor; diabetic nephropathy; pathogenesis; therarpy 中图分类号:R587.1 文献标识码:A

糖尿病是世界性公共卫生问题,据国际糖尿病 联盟发布的 2017 年统计数据显示,全球有 4.25 亿 糖尿病患者,预计到 2045 年将达到 7 亿。糖尿病肾 病(diabetic nephropathy, DN)是糖尿病的重要慢性 微血管并发症,临床表现为蛋白尿、肾小球滤过率 下降及肾功能减退等[1]。随着糖尿病发病率的升 高,糖尿病肾病的患病率也呈逐年上升趋势,且成 为终末期肾病的主要原因,严重影响患者的生活质 量并增加社会的医疗负担。

目前 DN 的治疗方法主要包括控制血糖、血压、血脂水平,肾素-血管紧张素抑制剂的使用及生活方式的改变等,但疗效却不甚满意,因此寻求新的有效治疗方法对防治 DN 显得迫在眉睫。然而 DN 的发病机制复杂,对其研究仍在不断进展中,氧化应激作为重要的发病机制之一始终处于核心地位。转录因子核因子 E2 相关因子 2(nuclear factor erythroid 2-related factor 2, Nrf2)作为机体抗氧化应激过程的关键分子,近年来研究发现其在延缓 DN 进展中起着重要作用[2],因此本文就 Nrf2 在糖尿病肾

病中的研究作一综述。

1 Nrf2 概述

1.1 Nrf2 结构

Nrf2 是 CNC(cap'n'collar)家族中转录活性最 强的转录因子,具有碱性亮氨酸拉链结构(basic leucine zipper, bZIP), 含有 7 个高度保守的 Nrf2-ECH (Neh)同源结构域,即Neh1~Neh7^[3]。Neh1 包含 基本的 CNC-bZIP 结构,可促进 Nrf2 向细胞核内转 移,并与抗氧化反应元件(antioxidant response element, ARE)结合,进而促进下游靶基因的转录。 Neh2 是一个高度保守的结构域,可参与胞浆中泛 素-蛋白酶体介导的 Nrf2 降解,并能促使 Nrf2 与 Kelch 样环氧氯丙烷相关蛋白 1 (Kelch-like ECH-associated protein 1, Keap1)结合,从而调控 Nrf2 活性。 Neh3-Neh5 是 Nrf2 的反式激活结构域, Neh3 通过与 染色质重构蛋白 6 作用来激活 Nrf2, Neh4 和 Neh5 通过与其它转录共激活因子结合启动 Nrf2 靶基因 的转录。Neh6 可与二聚体 β 转导子重复包含蛋白 结合从而负调控 Nrf2 的转录活性。Neh7 通过与视 黄酸受体 α 结合,抑制 Nrf2 下游靶基因的表达。

1.2 Nrf2 的分子调控机制

生理情况下,位于细胞质中的 Keap1 通过其

收稿日期:2019-05-29;修回日期:2020-01-07

基金项目:国家自然科学基金资助项目(81473480);上海市医学重点专科建设项目(ZK2015A18).

^{*}通信作者,E-mail:810983348@qq.com.

Kelch 重复结构域与 Nrf2 的 Neh2 结构域结合,将 Nrf2 定位于细胞质中,抑制其向细胞核内的转移,并介导 Nrf2 的泛素化降解,从而抑制 Nrf2 的活性。当细胞内发生氧化应激时,Keap1 构象发生改变,与 Nrf2 解离,游离的 Nrf2 进入细胞核,在核内不断蓄积激活下游靶基因的转录,同时 Keap1 构象改变失去了对 Nrf2 的降解作用,使 Nrf2 处于活化状态。因此 Keap1 是 Nrf2 的负调控蛋白。

除 Keap1 外,细胞中还有多种蛋白激酶和蛋白分子,在氧化应激发生时被激活,不依赖于 Keap1 直接与 Nrf2 作用,使其发生磷酸化和构象改变,进而人核发挥转录活性。目前研究这些蛋白激酶主要包括蛋白激酶 C(protein kinase C,PKC)、磷脂酰肌醇 3-激酶(phosphoinositide 3-kinase,PI3K)、酪氨酸蛋白激酶(Fyn)、酪蛋白激酶 2 相互作用蛋白-1(Casein kinase 2 interacting protein-1,CKIP-1)、沉默信息调节因子 2 相关酶 1(sirtuin1,SIRT1)等^[4]。不同的磷酸化位点对 Nrf2 有不同的效应,如 PKC 可使Nrf2 上的 Ser40 发生磷酸化,从而激活 Nrf2 入核发挥转录活性;Fyn 可使 Nrf2 上的 Tyr568 发生磷酸化,促使 Nrf2 出核从而抑制 Nrf2 活性^[5]。

此外,研究表明 micro RNA(miRNA)与长链非编码 RNA(lncRNA)也参与 Nrf2 活性的调控,如在肾小管上皮细胞中, miR-29 可通过抑制 Keap1 mRNA 表达,促进 Nrf2 泛素化而保护小管细胞^[6]; MIAT 作为 lncRNA 的代表,可通过维持细胞内 Nrf2 活化的稳定性而减少高糖诱导的肾小管上皮细胞的损伤^[7]。总之,Nrf2 的活性主要受 Keap1 和蛋白激酶的调控,miRNA 和 lncRNA 对 Nrf2 的调控研究相对较少,尤其是 lncRNA 如何调控 Nrf2,还有待进一步研究。

2 Nrf2 在糖尿病肾病发病机制中的 研究

DN 发病机制主要与氧化应激及相关炎症和纤维化、糖脂代谢紊乱、肾素-血管紧张素系统(reninangiotensin system, RAS)、线粒体功能障碍、遗传因素等有关。Nrf2 作为重要的转录因子,通过多种途径参与 DN 的发生发展。

2.1 Nrf2 与氧化应激及相关炎症和纤维化

氧化应激、炎症及纤维化是 DN 的重要发病机制,三者之间有密切联系, Nrf2 作为重要的抗氧化酶,可通过多种途径参与机体抗氧化反应。首先,

Jiang 等[8]在 DN 患者的肾组织中观察到活性氧簇 (reactive oxygen species, ROS) 增加及 Nrf2 水平升 高。其次,在体内动物研究中,发现链脲佐菌素 (STZ)诱导的 1型 DN 小鼠, Nrf2(-/-)比 Nrf2(+/ +)小鼠有更高的 ROS 水平、DNA 损害和更严重的 肾脏病理损害;进一步发现激活 SIRT1,从而激活 Nrf2 抗氧化通路,可减轻肾脏内氧化应激、炎症和 纤维化水平。在2型 DN 小鼠中, Song 等[9] 通过下 调 miR-27a,直接减少 miR-27a 与 Nrf2 的结合,促进 Nrf2 的活化,进而抑制 db/db 小鼠肾组织内氧化应 激和炎症反应。在体外研究中,发现激活 Nrf2/ARE 通路可减少细胞内 ROS 水平、抑制肿瘤坏死因子α、白细胞介素等炎症因子和纤维连接蛋白、IV 型胶 原蛋白等纤维化蛋白的表达,从而改善高糖诱导的 小管细胞、系膜细胞和内皮细胞损伤[10],进一步发 现 Nrf2/ARE 的激活受 SIRT1、CKIP-1 及 Fyn 的调 控。可见,Nrf2 在 DN 氧化应激、炎症及纤维化中研 究广泛,多种途径均可通过调控 Nrf2 发挥作用,也 说明 Nrf2 在 DN 中的重要性。

2.2 Nrf2 与糖脂代谢紊乱

糖尿病状态下肾组织中糖代谢活跃,葡萄糖可 经过一系列反应形成晚期糖基化终末产物 (advanced glycation end products, AGEs), 是造成肾 脏损伤的重要病理因素。实验研究发现,糖尿病模 型肾小球内有大量的脂质沉积,并与肾小球的病理 损害程度相关,而特异性降脂治疗能逆转 DN 进展, 因此糖脂代谢紊乱也是 DN 的重要发病机制之一。 在 STZ 诱导的 DN 小鼠中发现. 上调 Nrf2 可明显抑 制 AGEs 生成和 AGEs 受体表达,从而改善 DN 小鼠 的糖毒性损伤。同时, Cheng 等[11] 发现非诺贝特 (一种有效的降脂药)改善1型和2型 DN 小鼠肾损 伤是通过 PI3K/Akt/GSK-3β/Fyn 介导的 Nrf2 途径 的激活来实现的。在棕榈酸酯(palmitate, PA)诱导 的系膜细胞脂毒性研究中发现,激活 Nrf2 可抑制 PA 诱导的内质网应激及凋亡基因的表达,从而减 轻 PA 诱导的系膜细胞脂毒性损伤[12]。

2.3 Nrf2 与 RAS

RAS 是一个调节钠平衡、体液平衡和动脉血压的激素系统,所有的 RAS 成分在肾内均有表达:包括肾素、血管紧张素原(angiotensinogen, Agt)、血管紧张素 1-7 受体(MasR)、血管紧张素转换酶(angiotensin-converting enzyme, ACE)、血管紧张素转换酶2(Ace2)。其中 Agt 主要在近端肾小管上皮细胞中表达,并经肾素转化为非活性 Agt I,再经 ACE 转化为活性 Agt II。在 DN 发病过程中,无论是早期还是

晚期都有一系列血管活性物质参与,而肾内 RAS 的异常活跃,引起肾小球血流动力学紊乱,导致肾小球内高压、高滤过、高灌注,进一步引起肾小球损害和蛋白尿发生,促进 DN 的发展。Zhao 等^[13]在研究 Nrf2 对 RAS 基因表达的影响中,采用高糖诱导近端肾小管损伤模型,用 siRNA 或 Nrf2 抑制剂抑制 Nrf2 表达后,发现 Agt、ACE 基因转录减少,而 Ace2、MasR 基因表达则增加。说明 Nrf2 刺激肾脏内 RAS 基因表达则增加。说明 Nrf2 刺激肾脏内 RAS 基因的表达,从而调控肾内 RAS 及血流动力学,由此推测 Nrf2 抑制剂有可能作为 RAS 抑制剂,改善肾小管纤维化和肾小管萎缩。

2.4 Nrf2 与线粒体功能障碍

线粒体是一种重要的细胞器,存在于大多数真 核细胞中,是细胞氧化磷酸化发生的主要场所,通 过三羧酸循环合成腺嘌呤核苷三磷酸 (adenosine triphosphate, ATP), 为细胞提供能量, 维持细胞的正 常功能。肾脏细胞内含有丰富的线粒体,线粒体是 产生 ROS 的主要部位, 而 ROS 是导致肾脏损害的 重要因素,因此线粒体功能障碍在 DN 的发病中越 来越受到重视。目前在肾脏中有关 Nrf2 与线粒体 功能的研究相对较少,主要集中在线粒体自噬方 面。Sun 等[14] 在 db/db 小鼠模型和高糖诱导的肾 小球内皮细胞中,发现线粒体自噬缺乏,线粒体 ROS 生成增加、膜电位下降以及 PINK、parkin 蛋白 表达减少,通过促进 Nrf2 核转录,激活 Nrf2/ARE 途 径,可以增加 PINK、parkin 蛋白的表达,逆转线粒体 功能。在 db/db 小鼠肾小管和高糖诱导的肾小管细 胞中,也发现线粒体自噬缺乏及线粒体功能障碍, 使用 mitoQ(一种靶向线粒体的抗氧化剂)处理后, 增加了 Nrf2 的转录活性及 PINK、parkin 蛋白的表 达,减少小管细胞的凋亡;进一步用 Nrf2 siRNA 干 预后阻断了 mitoO 对线粒体自噬和小管损害的保护 作用。说明 Nrf2 在线粒体自噬和线粒体功能方面 起重要作用。

2.5 Nrf2 与遗传易感性

近年来,遗传因素在 DN 的发病中倍受关注,临床中发现并非所有的糖尿病患者都会发生肾脏损害,遗传因素决定了机体对内环境紊乱有不同的反应,即在 DN 易感性方面有重要作用。目前对遗传易感性研究较多的是基因多态性。近期,吉林大学第二医院肾脏病研究组发现^[15],在中国东北地区的汉族人群中存在 Nrf2 基因变异,包括 rs2364723、rs10497511、rs1962142、rs6726395,并证实了其与糖尿病并发症有关。此外,在人类糖尿病肾脏中也观察到 Nrf2 信号失调。因此 Nrf2 基因变异对糖尿病

病人是否发展为 DN 可能起重要作用,但这方面的研究目前仍较欠缺,还有待进一步探索。

3 中药及其有效成分激活 Nrf2 在糖 尿病肾病治疗中的研究

在 DN 的治疗中,除一般性治疗(控制血糖、饮食、运动及服用 Agt II 受体阻断剂)外,还有很多关于 Nrf2 激活剂的基础及临床研究,如萝卜硫素、白藜芦醇、锌、泛素蛋白酶体抑制剂等,其中研究最多的是甲基巴多索隆(bardoxolone methyl, BM),并进入 II 期临床试验[16]。在试验过程中,BM 能有效地改善肾小球滤过率,但却因严重的心血管事件而被迫终止。中药及其有效成分在 DN 的治疗研究已久,并具有可观的应用前景。

3.1 姜黄素

姜黄素是 Nrf2 激活剂在 DN 研究中最多的中药 成分。作为姜黄根茎的主要活性成分,具有抗氧 化、抗炎、抗癌、降低血脂、血糖的作用,尤其是抗氧 化作用。Bo Hwan 等[17]在2型 DN 模型大鼠中观察 到,姜黄素可以通过上调 Nrf2 信号通路,有效改善 蛋白尿、肾小球病理改变、尿丙二醛(Malonaldehyde, MDA)及超氧化物歧化酶水平,抑制氧化应激,保护 肾小球。在体外研究中发现,姜黄素可抑制肾小管 上皮细胞上皮-间质转分化,并与 Nrf2 蛋白的上调 有关:用 siRNA 敲减 Nrf2 基因后姜黄素的抗纤维化 作用减弱,说明姜黄素通过上调 Nrf2 发挥抗纤维化 作用,从而保护小管细胞。Yang等[18]在2型DN患 者中,给予姜黄素 500 mg/d 口服,治疗 15~30 天, 结果发现姜黄素可明显减少尿微量白蛋白、血浆 MDA 水平,增加血淋巴细胞中 Nrf2 通路相关蛋白 醌氧化还原酶(NAD(P)H quinone oxidoreductase 1, NQO-1) 及其它抗氧化酶水平,并能减少血浆脂多糖 含量、抑制淋巴细胞中相关炎症蛋白的表达,从而 减缓 DN 的进展。由此可见,姜黄素通过激活 Nrf2 途径延缓 DN 的发展已有了一定的基础和临床研 究,有望进一步进入临床试验阶段,并成为治疗 DN 的新药。

3.2 虎杖苷

虎杖苷是中药虎杖的主要活性成分,也称为白藜芦醇苷,药理研究具有抗炎、抗氧化等多种药理活性,临床上已被用于预防卒中、缺血/再灌注损伤及充血性心力衰竭等,在 DN 的治疗中也多有研究。Gong等[19]发现虎杖苷通过促进 Nrf2/ARE 抗氧化通路,抑制肾小球系膜细胞纤维化,进而改善 DN 大

鼠肾功能,进一步研究发现,Nrf2 的激活受 CKIP-1的调控,即虎杖苷通过激活 CKIP-1-Nrf2-ARE 通路延缓糖尿病肾纤维化。此外虎杖苷还可通过 Sirt1途径激活 Nrf2/ARE 通路,减轻肾小球系膜细胞氧化应激损伤,进一步发现虎杖苷可减少 AGEs 受体,从而增加 Sirt1 蛋白的表达和活性,并促进 Nrf2 靶基因的转录,最终抑制氧化应激损伤。因此,虎杖苷可能通过多种途径发挥抗氧化、抗炎作用,而 Nrf2 有可能是其作用的关键因子。

3.3 黄连素

黄连素是从植物黄连、黄柏中提取的生物碱, 具有多种药理活性,如抗氧化、抗炎、抗肿瘤、抗纤 维化作用等。研究表明,黄连素可通过减少转化生 长因子-β表达,抑制细胞外基质沉积,改善糖尿病 小鼠的肾功能,抑制高糖诱导的肾小球系膜细胞增 殖。而近年来有关黄连素对肾小管细胞的保护作 用受到格外关注,研究表明,黄连素通过抑制内质 网应激和线粒体应激,保护肾小管细胞免于缺血/ 再灌注损伤,并能通过多种途径抑制氧化应激和纤 维化。Zhang 等[20] 发现黄连素通过激活 Nrf2 途径 改善 DN 小鼠的肾小管纤维化及高糖诱导的上皮-间质转分化,进一步用 siRNA 沉默 Nrf2 基因后,黄 连素对 Nrf2 靶基因 NOO1 表达的诱导作用减弱,说 明 Nrf2 是黄连素的作用靶点之一。此外,研究表明 黄连素还可通过核因子 κB(nuclear factor kappa-B, NF-κB)途径抑制肾小管细胞炎症和纤维化。

目前研究的其它一些中药及中药成分,包括鸡血藤、杜仲、丹参酚酸 A、三七皂苷、五味子素、黄芪甲苷等,均可通过激活 Nrf2 途径,抑制细胞氧化应激、炎症等反应,延缓 DN 的进展。虽然这些研究尚未进入临床试验阶段,但就目前研究进展来看具有十分可观的前景。

4 总 结

Nrf2 作为细胞氧化应激反应中的关键分子,除维持细胞氧化还原平衡外,还参与细胞抗炎症、纤维化反应,改善糖脂代谢紊乱、RAS、线粒体功能,并与遗传易感性有关,目前已成为 DN 的研究热点之一。在 DN 的治疗方面,针对 Nrf2 通路已进行了基础及临床试验,但结果并不理想,而中药及中药成分则显示出明显的优越性,但仍需进行大量实验及临床验证以排除其严重的副作用,以期为 DN 的预防和治疗提供新的方法和思路。

参考文献:

- [1] HANEDA M, UTSUNOMIYA K, KOYA D, et al. A new classification of diabetic nephropathy 2014; a report from joint committee on diabetic nephropathy [J]. J Diabetes Investig, 2015,6(2):242-6.
- [2] MA T, ZHENG Z, GUO H, et al. 4-O-methylhonokiol ameliorates type 2 diabetes-induced nephropathy in mice likely by activation of AMPK-mediated fatty acid oxidation and Nrf2-mediated anti-oxidative stress [J]. Toxicol Appl Pharmacol, 2019, 370:93-105.
- [3] KEUM YS, CHOI BY. Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway [J]. Molecules, 2014, 19 (7): 10074-89.
- [4] 王朝阳,荆黎. 核转录因子 E2 相关因子 2 和 Keapl 的分子结构和功能及其信号通路调控分子机制研究进展 [J]. 中国药理学与毒理学杂志,2016,30(5):598-604.
- [5] KASPAR JW, JAISWAL AK. Tyrosine phosphorylation controls nuclear export of Fyn, allowing Nrf2 activation of cytoprotective gene expression [J]. FASEB J,2011,25(3):1076-87.
- [6] ZHOU L, XU DY, SHA WG, et al. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway [J]. J Transl Med, 2015, 13:352.
- [7] ZHOU L,XU DY,SHA WG,et al. Long non-coding MIAT mediates high glucose-induced renal tubular epithelial injury [J]. Biochem Biophys Res Commun, 2015,468(4):726-32.
- [8] JIANG T, HUANG ZP, LIN YF, et al. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy [J]. Diabetes, 2010, 59(4):850-60.
- [9] SONG J, ZHANG HX, SUN YN, et al. Omentin-1 protects renal function of mice with type 2 diabetic nephropathy via regulating miR-27a-Nrf2/Keap1 axis [J]. Biomed Pharmacother, 2018, 107: 440-6.
- [10] CHENG D, GAO L, SU S, et al. Moringa isothiocyanate activates Nrf2: potential role in diabetic nephropathy [J]. AAPS J, 2019, 21(2):31.
- [11] CHENG YL, ZHANG JJ, GUO WY, et al. Up-regulation of Nrf2 is involved in FGF21-mediated fenofibrate protection against type 1 diabetic nephropathy [J]. Free Radic Biol Med, 2016, 93: 94-109.
- [12] KIM D, KIM HJ, CHA SH, et al. Protective effects of broussonetia kazinoki siebold fruit extract against palmitate-induced lipotoxicity in mesangial cells [J]. Evid Based Complement Alternat Med, 2019,2019;4509403.
- [13] ZHAO S, GHOSH A, LO CS, et al. Nrf2 deficiency upregulates intrarenal angiotensin-converting enzyme-2 and angiotensin 1-7 receptor expression and attenuates hypertension and nephropathy in diabetic mice [J]. Endocrinology, 2018, 159(2):836-52.
- [14] SUN J,ZHU H, WANG X, et al. CoQ10 ameliorates mitochondrial dysfunction in diabetic nephropathy through mitophagy [J]. J Endocrinol, 2019, JOE-18-0578.
- [15] XU X,SUN J,CHANG X, et al. Genetic variants of nuclear factor erythroid-derived 2-like 2 associated with the complications in Han descents with type 2 diabetes mellitus of Northeast China [J]. J Cell Mol Med, 2016, 20(11); 2078-88.

(下转第557页)

观察。

综上所述,据患者临床表现结合基因检测结果(SNP 位点 rs2583016,GCAGGAGGC[A/G]CGGCG),此患者可确诊为 MODY6。值得注意的是,在先证者家族中血糖正常者(图 3D)也检测到同样的基因突变,可继续追踪其血糖水平。临床上糖尿病合并其它脏器疾病者不少,但合并甲状腺疾病患者少,对此类患者应考虑 MODY6 可能,若条件允许宜行相关基因检测进一步明确诊断。

参考文献:

- [1] THANABALASINGHAM G, OWEN KR. Diagnosis and management of maturity onset diabetes of the young (MODY) [J]. BMJ, 2011, 343:d6044.
- [2] VAXILLAIRE M, FROGUEL P. Monogenic diabetes in the young, pharmacogenetics and relevance to multifactorial forms of type 2 diabetes [J]. Endocr Rev, 2008, 29(3);254-64.
- [3] FAJANS SS, BELL GI. MODY; history, genetics, pathophysiology, and clinical decision making [J]. Diabetes Care, 2011, 34 (8): 1878-84.
- [4] BONNEFOND A, PHILIPPE J, DURAND EA, et al. Whole-Exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene[J]. PLoS One, 2012, 7(6):e37423.
- [5] NAYA FJ, STELLRECHT CM, TSAI MJ. Tissue-specific Regulation of the Insulin Gene by a Novel Basic Helix-Loop-Helix Transcription Factor [J]. Genes Dev, 1995, 9(8):1009-19.
- [6] GU C, STEIN GH, PAN N, et al. Pancreatic beta cells require Neu-

- roD to achieve and maintain functional maturity [J]. Cell Metab, 2010,11(4):298-310.
- [7] MALECKI MT, JHALA US, ANTONELLIS A, et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus[J]. Nat Genet, 1999, 23(3):323-28.
- [8] KRISTINSSON SY, THOROLFSDOTTIR ET, TALSETH B, et al. MODY in Iceland is associated with mutations in HNF-1 alpha and a novel mutation in NeuroD1 [J]. Diabetologia, 2001, 44 (11): 2098-103.
- [9] LIU LM, FURUTA H, MINAMI A, et al. A novel mutation, Ser159Pro in the NeuroD1/BETA2 gene contributes to the development of diabetes in a Chinese potential MODY family[J]. Mol Cell Biochem, 2007, 303 (1/2):115-20.
- [10] RUBIO-CABEZAS O, MINTON JA, KANTOR I, et al. Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities [J]. Diabetes, 2010, 59(9):2326-31.
- [11] SZOPA M, LUDWIG-GALEZOWSKA AH, RADKOWSKI P, et al. A family with the Arg103Pro mutation in the NEUROD1 gene detected by next-generation sequencing-Clinical characteristics of mutation carriers[J]. Eur J Med Genet, 2016, 59(2):75-9.
- [12] HORIKAWA Y, ENYA M, MABE H, et al. NEUROD1-deficient diabetes (MODY6): Identification of the first cases in Japanese and the clinical features [J]. Pediatr Diabetes, 2018, 19 (2): 236-42.
- [13] 邓明群,王晓晶,肖新华,等. 新的神经分化因子 1 基因突变导致青少年的成人起病型糖尿病 6 型的临床及分子遗传研究 [J]. 中华糖尿病杂志,2019,11(1):53-7.

(本文编辑:蒋湘莲)

(上接第553页)

- [16] WENPENG CUI, XU MIN, XIAOHONG XU, et al. Role of nuclear factor erythroid 2-related factor 2 in diabetic nephropathy [J]. J Diabetes Res, 2017, 2017;3797802.
- [17] BO HWAN KIM, EUN SOO LEE, RAN CHOI, et al. Protective effects of curcumin on renal oxidative stress and lipid metabolism in a rat model of type 2 diabetic nephropathy [J]. Yonsei Med J, 2016,57(3):664-73.
- [18] YANG H, XU W, ZHOU Z, et al. Curcumin attenuates urinary excretion of albumin in type II diabetic patients with enhancing nuclear factor erythroid-derived 2-like 2 (Nrf2) system and repress-

- ing inflammatory signaling efficacies [J]. Exp Clin Endocrinol Diabetes, 2015, 123(6): 360-7.
- [19] GONG W, LI J, CHEN Z, et al. Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating CKIP-1 to resist HG-induced up-regulation of FN and ICAM-1 in GMCs and diabetic mice kidneys [J]. Free Radic Biol Med, 2017, 106:393-405.
- [20] ZHANG X, HE H, LIANG D, et al. Protective effects of berberine on renal injury in streptozotocin (STZ)-induced diabetic mice [J]. Int J Mol Sci, 2016, 17(8): E1327.

(本文编辑:蒋湘莲)